

Catalytic, Interrupted Formal Homo-Nazarov Cyclization with (Hetero)arenes: Access to α -(Hetero)aryl Cyclohexanones

Corey W. Williams, *, Raynold Shenje, *, and Stefan France**, †, ‡

[†]School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States

Supporting Information

ABSTRACT: The first examples of a Lewis-acid catalyzed (hetero)arene interrupted, formal homo-Nazarov cyclization have been disclosed. Using SnCl₄ as the catalyst, alkenyl cyclopropyl ketones undergo ring-opening cyclization to form six-membered cyclic oxyallyl cations. Subsequent intermolecular Friedel-Crafts-type arylation with various electron-rich arenes and heteroarenes provides functionalized α -(hetero)arylated cyclohexanones, a scaffold present in many natural products and bioactive compounds, in yields up to 88% and diastereomeric ratios up to 12:1. Regiospecific arylation occurs at the α -carbon of the oxyallyl cation due to polarization caused by the ester group.

INTRODUCTION

Functionalized α -aryl and heteroaryl cyclohexanones represent two structural frameworks that are present at the core of a number of natural products and pharmaceutical agents. Given their prevalence and importance, various approaches toward α -(hetero)aryl cyclohexanones have been explored by synthetic chemists. Two common approaches involve the direct α arylation of cyclohexanones via transition metal catalyzed enol(ate) arylation² or enolate trapping with diaryl iodonium salts.³ Both of these approaches utilize aryl and/or heteroaryl halides as electrophilic coupling partners for the enolates. Alternatively, an increasingly popular approach to α -(hetero)aryl cyclohexanones involves the (hetero)arene as the nucleophile and an in situ-generated oxyallyl cation⁴ as the electrophilic coupling partner in an umpolung fashion (via a Friedel-Crafts-type reaction). For instance, Chi⁵ and MacMillan⁶ demonstrated that base (Na₂CO₃ or NEt₃) promoted the reaction of indoles with α -halo- or α -tosyloxycyclohexanones to form α -indolylcyclohexanones. Later, Tang reported the reaction of α -chlorocyclohexanone with 2-naphthol.⁷ Finally, Kartika reported that 6-membered aryl-substituted α -hydroxy methylenol ethers were readily converted to the corresponding oxyallyl cations and regioselectively trapped by indoles. While each method is powerful in its own right, the classes of arenes employed (indoles/naphthols) were limited, and the number of actual examples involving cyclohexanones was small (<6 examples). Thus, the broader scope of these umpolung α arylation reactions has yet to be fully realized.

Over the past five years, our group has explored the reactivity of oxyallyl cation intermediates generated in the formal homo-Nazarov cyclization (ring-opening cyclization of alkenyl cyclopropyl ketones) to access functionalized cyclohexanones, cyclohexenols, and phenols.9 In addition, we recently disclosed the first example of a catalytic, interrupted formal homo-Nazarov cyclization in the presence of allylsilanes. 9a In that report, the oxyallyl cation intermediate reacts with allyl TMS using catalytic SnCl₄ to form α -allylcyclohexanones. Additionally, hexahydrobenzofurans were preferentially obtained with stoichiometric SnCl₄ and allyl TBDPS via a formal [3 + 2] cycloaddition pathway. Given this success, we have now sought to expand the interrupted formal homo-Nazarov cyclization to include other nucleophilic trapping agents, with particular interest in arenes and heteroarenes.

Toward this endeavor, we were inspired by seminal work from West¹⁰ and others¹¹ on the interrupted Nazarov cyclization. In these contributions, various examples of interand intramolecular aryl trapping of the cyclopentyl oxyallyl cation were disclosed (Scheme 1A). We envisioned a homologous strategy to access functionalized α -(hetero)aryl cyclohexanones involving the Friedel-Crafts-type reactions of various arenes and heteroarenes with the six-membered, cyclic oxyallyl cations I generated through formal homo-Nazarov cyclizations (Scheme 1B). Lewis acid-activation of donor-

Received: May 31, 2016 Published: August 16, 2016

[‡]Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States

Scheme 1. Arylative Interrupted Nazarov vs Formal Homo-Nazarov Cyclization

$$\begin{array}{c} \mathsf{BF_3}\text{-}\mathsf{Et_2O} \\ \mathsf{(1.1\ equiv.)} \\ \mathsf{or} \\ \mathsf{O} \\ \mathsf{R} \\ \mathsf{R} \\ \mathsf{R} \end{array} \begin{array}{c} \mathsf{Class} \\ \mathsf{Class} \\ \mathsf{R} \\ \mathsf{R} \\ \mathsf{R} \\ \mathsf{R} \end{array} \begin{array}{c} \mathsf{Class} \\ \mathsf{Class} \\ \mathsf{R} \end{array} \begin{array}{c} \mathsf{Class} \\ \mathsf{Class} \\ \mathsf{Class} \\ \mathsf{Class} \\ \mathsf{R} \\ \mathsf{R}$$

B. Catalytic, Interrupted Formal Homo-Nazarov Cyclization (this work)

acceptor (D–A) cyclopropanes results in a ring-opening cyclization to form an initial acyclic zwitterionic intermediate. Subsequent intramolecular π -attack generates oxyallyl cations I which react with (hetero)arenes to provide α -(hetero)aryl cyclohexanones. Most importantly, regiospecific arylation at C-3 of intermediate I is expected due to the electron-withdrawing ester's influence on the polarization of the oxyallyl cation. ¹²

RESULTS AND DISCUSSION

Our reaction optimization began with cyclopropyl vinyl ketone 5a as the model substrate and anisole (6a) as the aromatic nucleophile (Table 1). Fortuitously, our previously reported

Table 1. Reaction Optimization

entry	Lewis acid	time (n)	7aa/8a [∌]	yield of 7aa (%)	
1	SnCl ₄	1	22.3:1	67	
2	In(OTf) ₃	1	1:1.7	11	
3	InCl ₃	24	11.5:1	69	
4	Sc(OTf) ₃	1	2.3:1	10	
5	Al(OTf) ₃	72	0:1	d	
6	Mg(OTf) ₂	27	5.7:1	63	

^aReactions were performed with 20 mol % Lewis acid, 10 equiv of anisole, and 1 equiv of cyclopropane 5a in CH_2Cl_2 (0.1 M) at 25 °C. ^bRatios determined by ¹H NMR. ^cIsolated yield of keto/enol isomer mixture after column chromatography. ^dNot determined.

allylsilane-trapping conditions (20 mol % $SnCl_4$, 10 equiv of nucleophile, CH_2Cl_2 , 25 °C) proved ideal and the desired α -arylated homo-Nazarov product 7aa was obtained in 67% yield as a complex keto—enol mixture of diastereomers. Consistent with reported and theoretical Friedel—Crafts reactions of anisoles, only the 4-alkylated regioisomer was observed. Other catalysts gave either decreased selectivity toward the arylated product or extended reaction times (entries 2—6). For instance, $In(OTf)_3$ favored the eliminative (untrapped) homo-Nazarov product 8a and gave only 11% yield of 7aa (entry 2), whereas $InCl_3$ gave 69% yield but with reduced selectivity and a longer reaction time (entry 3). Improved outcomes were not

observed upon decreasing the catalyst loading and/or the equivalents of anisole. Similarly, no improvement was seen by altering the reaction solvent or concentration (see the Supporting Information). Attempts to shift the keto—enol equilibrium toward either the keto or enol tautomer also failed to achieve any tenable results.

Given the complex keto-enol mixture, we were unable to unequivocally determine the absolute diastereoselectivity directly for 7aa. An estimate of the diastereoselectivity could be inferred from the ratios of enol H's using ¹H NMR (11:1 dr, Figure 1A). However, an easily exchangeable proton is usually not an ideal marker for determining ratios. This concern was confirmed by subjecting 7aa to Krapcho decarbalkoxylation conditions and measuring the diastereomeric ratio for product 9aa using ¹H NMR of the crude reaction mixture (Figure 1B). 9aa was obtained as a 7.7:1 diastereomeric mixture, which was later confirmed upon isolation. Thus, although an initial estimate of diastereoselectivity could be made directly for 7aa, it did not reflect the actual ratio (11:1 vs 7.7:1). Toward that end, for the remainder of the study, all diastereoselectivities were quantified and extrapolated to the keto-enol mixtures using the crude Krapcho products. Nevertheless, in the cases where 7aa will be carried forward for further derivatization, the enol proton can still be used as a qualitative estimate.¹⁴

For 9aa, the major diastereomer had the two aryl substituents at C-2 and C-4 anti relative to one another (Scheme 2). This outcome can be rationalized using a modified cyclohexa-1,3-diene twist-chair conformation according to the Fürst-Plattner Rule. During the formation of 7aa, aryl attack on the Sn-oxyallyl cation complex II is expected to occur in an axial fashion in order to achieve the preferred chairlike transition state (III). The anti orientation between the two aryl groups minimizes destabilizing 1,3-axial-pseudoaxial interactions upon aryl attack. This destabilization is more pronounced in the formation of the minor diastereomer. This diastereoselectivity is consistent with our previous observations in the allylative, interrupted formal homo-Nazarov cyclization.

Next, the reactivity of anisole with various cyclopropanes under the optimized conditions was examined (Table 2). Compared to 5a, phenyl cyclopropane 5b gave a reduced yield (44%) of the expected arylated product 7ba with a 11.7:1 *dr*. 4-Fluorophenylcyclopropane 5c afforded the desired product 7ca in 56% yield with a 10.5:1 *dr*. These product outcomes are consistent with expected Hammett parameters for benzylic

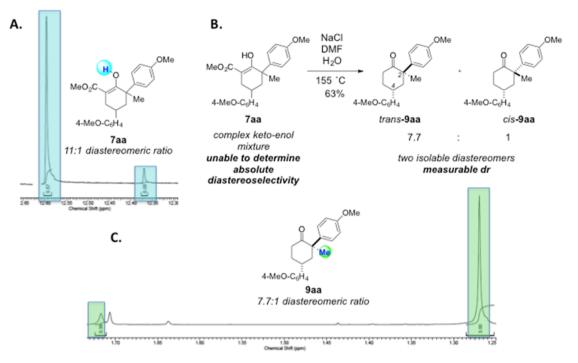


Figure 1. Determining diastereoselectivity using ¹H NMR

Scheme 2. Rationale for Stereochemical Outcome

carbocation stability. The gem-disubstituted methylphenyl cyclopropane **5d** provided **7da** in 44% yield with a 2.0:1 dr. This modest yield was unanticipated as we expected **5d** to perform better than **5b** due to the added stabilization from the gem-methyl group onto the benzylic carbocation intermediate. However, significant product degradation was also observed. Good product yield (77%) and diastereoselectivity (8.3:1 dr) for **7ea** was observed with the 2-naphthylcyclopropane **5e**. Aryltrapped product **7fa** was formed in 56% yield with a 5.5:1 dr from (2-thienyl)cyclopropane **5f**.

Employing a nonaromatic cation-stabilizing donor on the cyclopropane (as in the silylmethyl group in $\mathbf{5g}$) gave 57% yield of $7\mathbf{ga}$ with good diastereoselectivity (11.2:1 dr). Cyclopropanes $\mathbf{5h}$ and $\mathbf{5i}$, respectively bearing an α -ethoxy or α -methylenesilyl substituent on the alkene, both gave the undesired eliminative homo-Nazarov products and/or copious amounts of indiscernible degradation products. The extra carbocation stabilization provided by the heteroatom in $\mathbf{5h}$ presumably reduces the electrophilicity of the oxyallyl cation thus hindering nucleophilic trapping, whereas the lability of the silyl group in $\mathbf{5i}$ results in rapid formation of the eliminative product. ^{12,19}

Other arenes were then employed to further probe the generality of the transformation (Table 3). 1,2-Dimethoxybenzene (6b) is alkylated at its 4-position to give the expected product 7ab in 72% yield with a 5.3:1 dr (entry 1). With 1,3-dimethoxybenzene (6c), two regioisomeric products are possible; although only one product 7ac (alkylation at more sterically accessible C-4) was obtained in 62% yield and a 6.8:1

dr (entry 2). Triphenylamine (6d) proved to be a competent nucleophile providing 7ad in 71% yield and a 2.0:1 dr (entry 3). The 4-alkylated product 7ae was isolated in 70% yield with a dr of 1.2:1 from the reaction with 1-methoxynaphthalene (6e, entry 4). 4-Methylanisole (6f) gave a low yield (15%) of 7af (entry 5). In this case, as compared to 7ac, steric hindrance presumably overrides any electronic preference for reactivity. Less electron-rich arenes, such as benzene, toluene, halobenzenes, 3-bromoanisole, and TMS benzene, failed to provide tractable amounts of α -arylated products (Figure 2). In these cases, varying amounts of the eliminative homo-Nazarov product and a putative chloride-trapping product were observed.

Given the success with arenes, we moved on to employing heteroarenes as the nucleophiles under the same reaction conditions (Table 4). Furan (10a) and thiophene (10b) both gave their expected 2-alkylated products 11aa and 11ab in 66% and 74% yield with dr's of 1.8:1 and 4:3:1, respectively (entries 1 and 2). The observed regioselectivity is consistent with both the Friedel-Crafts reactivity of furan/thiophene²⁰ and the observations by West^{10a} for the interrupted Nazarov cyclization. 2-Methoxythiophene (10c) afforded the 5-alkylated regioisomer 11ac in 75% yield and a 1.3:1 dr (entry 3), 2.5-Dimethylfuran (10d) and-thiophene (10e) provided their respective products 11ad and 11ae in 46% and 87% yield (entries 4 and 5). Due to the instability of 2,5-dimethylfuran in the presence of SnCl₄, the reaction was performed with InCl₃ (10 mol %). Benzothiophene (10f) was readily alkylated at the more nucleophilic C-3 position to form 11af in 73% yield and a 2.3:1 dr (entry 6). Similarly, N-tosyl indole (10h) afforded **11ah** in 69% yield and a 2.6:1 *dr* (entry 7). Blocking C-3 on *N*tosyl indole with a methyl group (as in 10i) gave only trace amount of product 11ai (entry 8). This outcome is most likely due to the combination of the reduced nucleophilicity at C-2 and the steric influence of the methyl group. Finally, no alkylated product was observed with N-tosyl- or N-methylpyrrole (entries 9 and 10).

Table 2. Catalytic, Interrupted, Formal Homo-Nazarov Cyclizations with Anisole

entry ^a Cyclopropane Product yield (%) ^b dr ^c 1		3a-g (1	0 equiv)	H. H-	•
1 MeO	entry	^a Cyclopropane	Product	yield (%) ^b	dr ^c
2 MeO Me MeO ₂ C Me Me	1	4-MeO-C ₆ H ₄	Ge MeO ₂ C Me 4-MeO-C ₆ H ₄ 7aa	72 (63)	7.7:1
3 MeO	2	Ph	MeO ₂ C Me	44 (58)	12:1
4 MeO Me MeO Co MeO MeO MeO Co MeO MeO MeO MeO Co MeO	3	4-F-C ₆ H ₄	e MeO_2C Me MeO_2C Me Me Me Me Me Me Me Me	56 (57)	11:1
5 MeO Me MeO Co MeO MeO MeO Co Me MeO Co MeO	4	MeO' A	e MeO ₂ C Me	44 (61)	2.0:1
6 MeO MeO MeO Co Me MeO Co Me So (76) 5.5:1 7 MeO	5	Np-2	e MeO ₂ C Me	77 (77)	8.3:1
7 MeO MeO OH MeO OH MeO OH MeO OH MeO OH MeO OH	6	2-thienyl	NeO ₂ C / Me	56 (76)	5.5:1
8 MeO OEt MeO CeH TMS MeO COH	7	TBDPS	e MeO ₂ C Me	57 (68)	11:1
9 MeO TMS MeO ₂ Cde	8	MeO 4-MeO-C ₆ H ₄	Et MeO ₂ C OH ODE 4-MeO-C ₆ H ₄ 7ha	d	e
		4-MeO-C ₆ H ₄	TMS MeO ₂ C OH	d	e

"Reactions were performed with cyclopropane **5** (1 equiv), arene **6** (10 equiv), and SnCl₄ (20 mol %) in CH₂Cl₂ (0.1 M) at 25 °C. ^bIsolated yield after column chromatography. Numbers in parentheses represent yields of Krapcho decarbalkoxylation products **9**. ^cDiastereomeric ratios determined by ¹H NMR on the decarbalkoxylated products. ^dNo desired product formed ^eNot determined.

To showcase the utility of the α -(hetero)arylated products as synthetic building blocks, we were inspired by the work of Padwa on intramolecular Diels–Alder reactions of alkylated furans tethered to alkenes.²¹ Toward that end, we sought to initiate a subsequent intramolecular [4+2] cycloaddition with

Table 3. Reactions with Various Arenes

^aReactions were performed with cyclopropane 5 (1 equiv), arene 6 (10 equiv), and SnCl₄ (20 mol %) in CH₂Cl₂ (0.1 M) at 25 °C. ^bIsolated yield after column chromatography. Numbers in parentheses represent yields of Krapcho decarbalkoxylation products 9. ^cDiastereomeric ratios determined by ¹H NMR on the decarbalkoxylated products. ^dNo desired Krapcho product isolated. ^eNot determined.

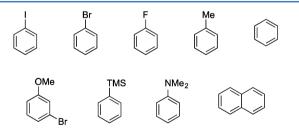


Figure 2. Unsuccessful arene trapping agents.

furan product **11aa** following α' -allylation. This sequence, if successful, would form a functionalized tricycle that should allow access into the tetracyclic core of the *Swietenia mahagoni* liminoids. When treated with NaH and allyl bromide, **11aa** underwent allylation in 53% yield to give **13** as a 7.1:3.6:3.1:1.0 mixture of diastereomers (Scheme 3). In agreement with our previous work, the major diastereomer from the allylation has the allyl and furan groups syn to one another (i.e., $13A-\alpha$). $13A-\alpha$ and the other syn diastereomer, $13A-\beta$, are both expected to undergo intramolecular cycloaddition, whereas the diastereomers with the allyl and furan groups anti to one another ($13B-\alpha$ and $13B-\beta$) will not react. When the mixture was heated in xylenes at reflux, the desired [4+2] cycloadduct **14** was obtained in 46% yield (based on $13A-\alpha/\beta$) as a 5.3:1

Table 4. Reactions Using Heteroarenes as Nucleophiles

^aReactions were performed with cyclopropane 5 (1 equiv), arene 10 (10 equiv), and SnCl₄ (20 mol %) in CH₂Cl₂ (0.1 M) at 25 °C. Isolated yield after column chromatography. Numbers in parentheses represent yields of Krapcho decarbalkoxylated products 12. ^cDiastereomeric ratios determined by ¹H NMR on the decarbalkoxylated products. ^aPerformed using 10 mol % InCl₃ instead of SnCl₄. ^eNot determined. ^fNo desired product formed.

mixture of diastereomers. Full conversion was not achieved as some unreacted $13A-\alpha/\beta$ was recovered along with what appears to be some starting material/product degradation.²⁴

In summary, we have developed a catalytic protocol for the interrupted, formal homo-Nazarov cyclization using a range of electron-rich arenes and heteroarenes as nucleophiles for trapping the six-membered oxyallyl cationic intermediate. The methodology provides facile access to densely functionalized α -(hetero)aryl cyclohexanones in a single step from donoracceptor-acceptor cyclopropanes. α -(Hetero)arylated products are formed regiospecifically, and in up to 88% yield and diastereoselectivities up to 12:1. A number of different cyclopropanes are viable for reactivity. This cascade transformation represents the first example of a (hetero)arylative,

Scheme 3. α' -Allylation and Attempted Intramolecular Diels-Alder Cycloaddition of 11aa

MeO₂C
$$\stackrel{\text{OH}}{\longrightarrow}$$
 $\stackrel{\text{NaH}}{\longrightarrow}$ $\stackrel{\text{MeO}_2C}{\longrightarrow}$ $\stackrel{\text{Me}}{\longrightarrow}$ $\stackrel{\text{MeO}_2C}{\longrightarrow}$ $\stackrel{\text{Me}}{\longrightarrow}$ $\stackrel{\text{MeO}_2C}{\longrightarrow}$ $\stackrel{\text{Me}}{\longrightarrow}$ $\stackrel{\text{MeO}_2C}{\longrightarrow}$ $\stackrel{\text{Me}}{\longrightarrow}$ $\stackrel{\text{MeO}_2C}{\longrightarrow}$ $\stackrel{\text{Me}}{\longrightarrow}$ $\stackrel{\text{Me}}{\longrightarrow}$

interrupted homo-Nazarov cyclization. Further work on the intramolecular, (hetero)arylative capture of oxyallyl cations in the homo-Nazarov reaction is currently underway. Application of the method toward specific bioactive natural product targets will be reported in due course.

EXPERIMENTAL SECTION

General Information. Chromatographic purification was performed as flash chromatography with silica gel (40–65 μm) or preparative thin-layer chromatography (prep-TLC) using silica gel F₂₅₄ (1000 μ m) plates and solvents indicated as eluent with 0.1–0.5 bar pressure. For quantitative flash chromatography, technical grades solvents were utilized. Analytical thin-layer chromatography (TLC) was performed on silica gel 60 μ m F $_{254}$ TLC glass plates. Visualization was accomplished with UV light. Infrared (IR) spectra were obtained using FTIR with an ATR attachment by attenuated total reflection through a diamond plate. The IR bands are characterized as weak (w), medium (m), and strong (s). Proton and carbon nuclear magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded on 300, 400, and 500 MHz spectrometers with solvent resonances as the internal standard (¹H NMR: CDCl₃ at 7.26 ppm; ¹³C NMR: CDCl₃ at 77.0 ppm). ^{19}F NMR spectra were recorded on 400 and 500 MHz spectrometers using PhCF₃ as an external standard. ¹H, ¹³C, and ¹⁹F NMR data are reported as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, dd = doublet of doublets, dt = doublet of triplets, ddd = doublet of doublets, t = triplet, tt = triplet of triplets, m = multiplet, br = broad), coupling constants (Hz), and integration. The accurate mass analyses were run in EI mode on a double focusing magnetic sector mass spectrometer at a mass resolution of 10 000 using PFK (perfluorokerosene) as an internal calibrant or in ESI mode using a hybrid linear ion trap/orbitrap tandem mass spectrometer. Uncorrected melting points were measured with a digital melting point apparatus.

Reaction Optimizations Procedures. Procedure for Catalyst Screening. To a dry flask charged with a stir bar and DCM was added the Lewis acid (20 mol %) under nitrogen. Anisole (10.0 equiv) was added. Finally, cyclopropane 5a (1.0 equiv, as a solution in DCM) was added, dropwise, to mixture at the room temperature. The volume of solvent used was such that the final concentration of cyclopropane in DCM was 0.1 M. The reaction was monitored by TLC until complete conversion of cyclopropane was observed. Upon reaching completion, the reaction was then quenched with distilled water (3 mL), and extracted with DCM three times. The combined organic layers were concentrated under reduced pressure and purified by silica gel flash chromatography using EtOAc/Hexane as the eluent.

Procedure for Optimization of Catalyst Loading. To a dry flask charged with a stir bar and DCM was added the applicable loading of SnCl₄ or InCl₃ under nitrogen. Anisole (10.0 equiv) was added. Finally, cyclopropane **5a** (1.0 equiv, as a solution in DCM) was added, dropwise, to mixture at the room temperature. The volume of solvent used was such that the final concentration of cyclopropane in DCM was 0.1 M. The reaction was monitored by TLC until complete conversion of cyclopropane was observed. Upon reaction completion, the reaction was then quenched with distilled water (3 mL) and extracted with DCM three times. The combined organic layers were concentrated under reduced pressure and purified by silica gel flash chromatography using EtOAc/hexanes as the eluent.

Procedure for Anisole Loading Screening. To a dry flask charged with a stir bar and DCM was added the appropriate loading of anisole and SnCl₄ (20 mol %). Finally, cyclopropane 5a (1.0 equiv, as a solution in DCM) was added, dropwise, to the mixture at the room temperature. The volume of solvent used was such that the final concentration of cyclopropane in DCM was 0.1 M. The reaction was monitored by TLC until complete conversion of cyclopropane was observed. Upon reaction completion, the reaction was then quenched with distilled water (3 mL), and extracted with DCM three times. The combined organic layers were concentrated under reduced pressure and purified by silica gel flash chromatography using EtOAc/hexanes as the eluent.

Procedure for Temperature and Solvent Screening. To a dry flask charged with a stir bar and the applicable solvent was added 20 mol % SnCl₄ under nitrogen. Anisole (10.0 equiv) was added. Finally, cyclopropane 5a (1.0 equiv, as a solution in appropriate solvent) was added, dropwise, to the mixture at room temperature. In the temperature screening, DCM was used as the solvent. The volume of solvent used was such that the final concentration of cyclopropane in the appropriate solvent was 0.1 M. The reaction was monitored by TLC until complete conversion of cyclopropane was observed. Upon reaching completion, the reaction was quenched with distilled water (3 mL), and extracted with DCM three times. The combined organic layers were concentrated under reduced pressure and purified by silica gel flash chromatography using EtOAc/hexanes as the eluent.

Synthesis of Trapping Agents. 1-Methoxynaphthalene (**6e**) was prepared according to a previously reported procedure. ²⁵

N-Tosyl Indole (*10g*). Adapted from a reported procedure. ^{26a} Indole (500 mg, 4.26 mmol) as a solution in THF (10 mL) was added to a suspension of NaH (256 mg as a 60% suspension in mineral oil, 6.40 mmol) in THF (10 mL) and stirred for 30 min. Tosyl chloride (900 mg, 4.72 mmol) was added as a solution in THF (5 mL) and stirred overnight. Water was slowly added, EtOAc added, and the organic layer was washed with sat. aq. NaHCO₃, brine, and dried over Na₂SO₄, and concentrated. The residue was purified by flash column chromatography on silica gel to give *N*-tosylindole (1.14 g, 98% yield). Characterization was consistent with that reported. ²⁷

N-Tosyl-3-methylindole (10h). Adapted from a reported procedure. 26a 3-Methylindole (1.00 g, 7.62 mmol) as a solution in THF (20 mL) was added to a suspension of NaH (666 mg as a 60% suspension in mineral oil, 16.65 mmol) in THF (20 mL) and stirred for 30 min. Tosyl chloride (1.60 g, 8.38 mmol) was added as a solution in THF (10 mL) and stirred overnight. Water was slowly added, EtOAc added, and the organic layer was washed with sat. aq. NaHCO3, brine, and dried over Na2SO4, and concentrated. The residue was purified by flash column chromatography on silica gel to give *N*-tosyl-3-methylindole (1.94 g, 89% yield). Characterization was consistent with that reported. 26b

N-Tosyl Pyrrole (10i). Prepared using a modification of a patented procedure. 28 Pyrrole (1.00 g, 15 mmol) as a solution in THF (4 mL) was added to a suspension of NaH (900 mg as a 60% suspension in mineral oil, 22.5 mmol) in THF (4 mL) and stirred for 30 min. Tosyl chloride (2.84 g, 15 mmol) was added as a solution in THF (4 mL) and stirred for 3 h. Water was slowly added, and the organic layer was separated, dried over $\rm Na_2SO_4$, and concentrated. The residue was purified by flash column chromatography on silica gel. Characterization was consistent with that reported. 28

Synthesis of Cyclopropyl Malonates. *Dimethyl 2-((tert-butyldiphenylsilyl)methyl)cyclopropane-1,1-dicarboxylate (15g)*. Prepared according to our previously reported conditions. ^{9a} Rh₂esp₂

(2 mg, 3 μ mol) was dissolved in DCM (2.05 mL) and allyl-TBDPS was added (1.18 mL, 4.11 mmol). After cooling to 0 °C, diazodimethylmalonate (500 mg, 3.15 mmol) was added as a solution in DCM (2.05 mL). The solution was allowed to warm to room temperature and stirred overnight. The reaction was quenched with sat. aq. thiourea, extracted three times with DCM, and the organic layer was washed with brine. The organic mixture was then dried over Na₂SO₄, filtered, and concentrated. The crude mixture was then purified by column chromatography on silica gel (10% EtOAc/Hexane, $R_{\rm f}=0.36$) to give the cyclopropane 15g as a colorless oil (1.19 g, 92% yield). All characterization was consistent with those previously published. ²⁹

Dimethyl 2-(Thiophen-2-ylmethylene)malonate (16). Prepared using our previously reported procedure. 30 Dimethylmalonate (1.00 g, 7.57 mmol) was dissolved in benzene (15 mL). Thiophene-2carboxaldehyde (0.90 mL, 9.84 mmol), piperidine (0.15 mL, 1.51 mmol), and acetic acid (0.22 mL, 3.78 mmol) were added. The reaction was heated to reflux with a Dean-Stark apparatus for 4 h. The reaction was then concentrated. After water was added, the reaction was extracted three times with EtOAc, washed with 1 M HCl, sat. aq. NaHCO3, and brine sequentially, dried over Na2SO4, filtered, and concentrated. The mixture was purified by column chromatography on silica gel (20% EtOAc/hexanes, $R_f = 0.44$) to give the unsaturated diester 16 as a yellow oil (1.77g, > 99% yield). ¹H NMR (500 MHz, CDCl₃) $\delta = 7.89$ (d, J = 0.6 Hz, 1 H), 7.55 - 7.52 (m, 1 H), 7.38 - 7.36(m, 1 H), 7.10-7.07 (m, 1 H), 3.93 (s, 3 H), 3.83 (s, 3 H). 13 C NMR $(126 \text{ MHz}, \text{CDCl}_2) \delta = 166.6, 164.7, 135.9, 135.5, 134.7, 131.9, 127.8$ 121.5, 52.8, 52.6. IR: 2951 (w), 1719 (s), 1612 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for C₁₀H₁₀O₄S 226.0300; Found 226.0302.

Dimethyl 2-(Thiophen-2-yl)cyclopropane-1,1-dicarboxylate (15f). Prepared using a previously reported procedure.³¹ Sodium hydride (195 mg as 60% suspension in mineral oil, 4.86 mmol) was dissolved in DMSO (8.8 mL), and trimethylsulfoxonium iodide (1.07 g, 4.86 mmol) was added in one portion at room temperature and stirred for 30 min. Compound 16 (1.00 g, 4.42 mmol) was added in one portion as a solution in DMSO (1.8 mL) at room temperature and stirred for 30 min. The reaction was quenched with water at 0 °C, extracted five times with diethyl ether, washed five times with water, dried over sodium sulfate, and concentrated. The resulting mixture was purified by column chromatography on silica gel (20% EtOAc/hexanes, R_f = 0.52) to give the cyclopropane 15f as a yellow oil (591 mg, 56% yield). ¹H NMR (300 MHz, CDCl₃) δ = 7.18–7.14 (m, 1 H), 6.90 (dd, J = 3.5, 5.1 Hz, 1 H), 6.85-6.82 (m, 1 H), 3.78 (s, 3 H), 3.48 (s, 3 H), 3.32-3.25 (m, 1 H), 2.17-2.12 (m, 1 H), 1.86-1.80 (m, 1 H). ¹³C NMR (75 MHz, CDCl₃) δ = 169.7, 166.7, 138.0, 126.7, 126.2, 125.1, 52.9, 52.5, 37.8, 27.3, 21.0. IR: 2951 (w), 1721 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for C₁₁H₁₂O₄S 240.0456; Found 240.0468.

Synthesis of Cyclopropyl Vinyl Ketones. Cyclopropyl vinyl ketones 5a-e, 5h, and 5i were prepared according to our previously reported conditions. All characterizations were in agreement with those previously published. 9a,c

Methyl 1-methacryloyl-2-(thiophen-2-yl)cyclopropane-1-carboxylate (5f). Prepared according to our previously reported conditions. 9a,c Compound 15f (580 mg, 2.41 mmol) dissolved in THF (6.2 mL) and isopropenylmagnesium bromide (5.8 mL as 0.5 M solution in THF, 2.90 mmol) were stirred for 2 h at -78 °C. The reaction was quenched with sat. aq. NH₄Cl, extracted three times with EtOAc, acidified to pH 4 with HCl, and extracted a final time with EtOAc. After drying with Na2SO4, filtering, and concentrating, the reaction was purified by flash chromatography on silica gel (10% EtOAc/hexanes, $R_f = 0.44$) and 5f was given as a colorless oil (398 mg, 65% yield). (Diastereomeric ratio = 2.7:1) ¹H NMR (500 MHz, CDCl₃) $\delta = 7.15$ (dd, J = 1.1, 5.0 Hz, 0.37 H), 7.07 (dd, J = 1.1, 5.0 Hz, 1 H), 6.91 (dd, J = 3.7, 5.2 Hz, 0.41 H), 6.89-6.87 (m, 0.41 H), $6.84 \text{ (dd, } J = 3.5, 5.0 \text{ Hz, } 1 \text{ H), } 6.65 \text{ (td, } J = 0.9, 3.7 \text{ Hz, } 1 \text{ H), } 5.91 \text{ (d, } 1 \text{ H), } 5.91 \text{ (d, } 2 \text{ Hz, } 2 \text{ H$ J = 0.9 Hz, 0.37 H), 5.74 - 5.71 (m, 1.47 H), 5.64 - 5.62 (m, 1 H), 3.71(s, 3 H), 3.50-3.45 (m, 2.28 H), 3.44-3.39 (m, 0.41 H), 2.27 (dd, J =4.7, 7.8 Hz, 0.41 H), 2.18 (dd, J = 5.0, 7.8 Hz, 1 H), 1.96-1.94 (m, 1.12 H), 1.76 (dd, J = 5.0, 9.3 Hz, 1 H), 1.74 (dd, J = 0.9, 1.5 Hz, 3 H), 1.61 (dd, J = 4.9, 9.2 Hz, 0.47 H). ¹³C NMR (126 MHz, CDCl₃) $\delta =$

195.7, 193.6, 171.2, 168.6, 144.3, 144.1, 138.3, 138.0, 126.8, 126.6, 126.6, 125.5, 125.2, 124.8, 124.4, 124.0, 52.6, 52.4, 42.3, 41.6, 28.4, 24.9, 21.7, 20.4, 17.9, 17.4. IR: 2953 (w), 1724 (s), 1670 (s) cm $^{-1}$. HRMS (EI) m/z: [M] $^+$ Calcd for $C_{13}H_{14}O_3S$ 250.0664; Found 250.0666.

(1R,2S)/(1S,2R)-Methyl 2-((tert-butyldiphenylsilyl)methyl)-1methacryloylcyclopropane-1-carboxylate (5g). Prepared according to our previously reported conditions. 9a,c Cyclopropane 15g (979 mg, 2.38 mmol) dissolved in THF (6.3 mL) and isopropenylmagnesium bromide (5.8 mL from 0.5 M solution in THF, 2.90 mmol) were stirred for 1 h at -78 °C. The reaction was quenched with sat. aq. NH₄Cl, extracted three times with EtOAc, acidified to pH 4 with HCl, and extracted a final time with EtOAc. After drying with Na2SO4, filtering, and concentrating, the reaction was purified by flash chromatography on silica gel (10% EtOAc/hexanes, $R_f = 0.47$) and 5g was given as a colorless oil (500 mg, 50% yield). ¹H NMR (500 MHz, CDCl₃) δ = 7.64–7.60 (m, 4 H), 7.42–7.32 (m, 6 H), 5.74 (s, 1 H), 5.60-5.59 (m, 1 H), 3.68 (s, 3 H), 2.04-1.96 (m, 1 H), 1.85 (t, J = 1.1 Hz, 3 H), 1.50 (dd, I = 3.2, 14.8 Hz, 1 H), 1.28–1.24 (m, 1 H), 1.18 (dd, J = 11.3, 15.0 Hz, 1 H), 1.06 (s, 9 H), 1.00 (dd, J = 4.6, 9.2 Hz, 1 H). ¹³C NMR (126 MHz, CDCl₃) δ = 197.1, 170.7, 144.5, 136.1, 136.0, 134.3, 134.0, 129.2, 129.2, 127.7, 127.6, 127.5, 123.1, 77.3, 76.7, 52.2, 39.6, 27.8, 27.8, 24.1, 24.0, 18.1, 17.9, 8.4. IR: 2953 (w), 2929 (w), 2887 (w), 2856 (w), 1728 (s), 1672 (s) cm⁻¹. HRMS (ESI) m/z: [M + H]+ Calcd for C26H33O3Si 421.2193; Found

(1R,2R)/(1S,2S)-Methyl 2-((tert-butyldiphenylsilyl)methyl)-1methacryloylcyclopropane-1-carboxylate (epi-5g). Prepared according to our previously reported conditions. 9a,c Cyclopropane 15g (979 mg, 2.38 mmol) dissolved in THF (6.3 mL) and isopropenylmagnesium bromide (5.8 mL from 0.5 M solution in THF, 2.90 mmol) were stirred for 1 h at -78 °C. The reaction was quenched with sat. aq. NH₄Cl, extracted three times with EtOAc, acidified to pH = 4 with HCl, and extracted a final time with EtOAc. After drying with Na₂SO₄, filtering, and concentrating, the reaction was purified by flash chromatography on silica gel (10% EtOAc/hexanes, $R_f = 0.39$) and epi-5g was given as a colorless oil (251 mg, 25% yield). ¹H NMR (500 MHz, CDCl₃) $\delta = 7.60-7.56$ (m, 4 H), 7.42-7.33 (m, 6 H), 5.80-5.78 (m, 1 H), 5.78-5.76 (m, 1 H), 3.59 (s, 3 H), 2.13-2.06 (m, 1 H), 1.97 (dd, J = 0.9, 1.5 Hz, 3 H), 1.49 (dd, J = 2.4, 14.6 Hz, 1 H), 1.19 (dd, J = 4.6, 7.6 Hz, 1 H), 1.04-1.01 (m, 10 H), 0.48 (dd, J = 12.2, 12.2)14.6 Hz, 1 H). ¹³C NMR (126 MHz, CDCl₃) δ = 196.3, 172.3, 145.7, 136.0, 135.9, 134.0, 133.9, 129.3, 127.7, 127.6, 124.3, 52.2, 38.6, 27.8, 26.2, 22.6, 18.1, 17.8, 9.8. IR: 2957 (w), 2928 (w), 2857 (w), 1726 (s), 1674 (s) cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for $C_{26}H_{33}O_3Si$ 421.2193; Found 421.2185.

Synthesis of (Hetero)arylated Homo-Nazarov Products. General Procedure. To a dry flask charged with a stir bar, 4 Å molecular sieves, and CH_2Cl_2 was added the appropriate arene or heteroarene (10 equiv) and cyclopropane (1.0 equiv., as a solution in CH_2Cl_2). The final volume of CH_2Cl_2 used was such that the concentration of cyclopropane in CH_2Cl_2 was 0.1 M. $SnCl_4$ (20 mol %) was added dropwise or $InCl_3$ (10 mol %) all at once and the reaction was stirred at room temperature (unless otherwise noted) until the cyclopropane was consumed (as monitored by TLC). The reaction was quenched with water (3 mL) and extracted three times with CH_2Cl_2 . The combined organic layers were dried over Na_2SO_4 and concentrated under reduced pressure. The resulting crude mixture was purified by silica gel flash chromatography unless noted as being purified by preparatory thin-layer chromatography using EtOAc/hexanes as the eluent.

Methyl 6'-Hydroxy-4,4"-dimethoxy-1'-methyl-1',2',3',4'-tetrahydro-[1,1':3',1"-terphenyl]-5'-carboxylate (7aa). Prepared following general procedure using cyclopropane 5a (100 mg, 0.37 mmol), anisole (0.40 mL, 3.65 mmol), and SnCl₄ (9 μ L, 0.07 mmol) in CH₂Cl₂ (3.7 mL) stirred at room temperature for 1 h. After workup and purification (10% EtOAc/hexanes, $R_{\rm f}=0.29$), cyclohexenol 7aa was given as a colorless oil (94 mg, 67% yield). Complex mixture of keto—enol tautomers and diastereomers. ¹H NMR (300 MHz, CDCl₃) $\delta=12.60$ (s, 0.57 H), 7.30–7.23 (m, 2.23 H), 7.22–7.14 (m, 4.52 H),

7.07–7.01 (m, 1.65 H), 7.00–6.95 (m, 2.15 H), 6.91–6.83 (m, 4.16 H), 6.83–6.77 (m, 1.72 H), 3.84 (s, 2.91 H), 3.81–3.79 (m, 8.20 H), 3.77 (d, J=2.8 Hz, 6.27 H), 3.27–3.15 (m, 1.26 H), 2.77 (dt, J=3.3, 14.4 Hz, 1.11 H), 2.68 (dd, J=1.7, 5.2 Hz, 0.35 H), 2.65–2.52 (m, 1.36 H), 2.37–2.15 (m, 3.02 H), 2.15–1.96 (m, 3.16 H), 1.61 (s, 2.32 H), 1.29 (s, 3.00 H). 13 C NMR (75 MHz, CDCl₃) $\delta=208.4$, 174.9, 173.3, 170.5, 158.5, 158.4, 157.9, 157.8, 138.2, 137.6, 135.7, 134.3, 127.6, 127.6, 127.5, 127.0, 114.8, 114.0, 113.7, 113.5, 98.7, 55.3, 55.2, 55.2, 54.1, 54.0, 52.0, 51.6, 46.4, 45.8, 45.0, 37.8, 37.1, 34.4, 32.0, 28.4, 27.1. IR: 2931 (w), 1746 (m), 1714 (m), 1653 (m), 1611 (m), 1512 (s) cm $^{-1}$. HRMS (EI) m/z: [M] $^+$ Calcd for $C_{23}H_{26}O_{5}$ 382.1780; Found 382.1765.

Methyl 6'-Hydroxy-4-methoxy-1'-methyl-1',2',3',4'-tetrahydro-[1,1':3',1"-terphenyl]-5'-carboxylate (7ba). Prepared following the general procedure using cyclopropane 5b (104 mg, 0.42 mmol), anisole (0.44 mL, 4.09 mmol), and SnCl₄ (9 µL, 0.07 mmol) in CH₂Cl₂ (4.2 mL) stirred at room temperature for 1 h. After workup and purification by prepTLC (10% EtOAc/hexanes, $R_f = 0.48$), cyclohexenol 7ba was given as a colorless oil (66 mg, 44% yield). Complex mixture of keto-enol tautomers and diastereomers. ¹H NMR (500 MHz, CDCl₃) $\delta = 12.59$ (s, 0.90 H), 12.36 (s, 0.14 H), 7.35-7.30 (m, 1.87 H), 7.28-7.21 (m, 7.89 H), 7.18-7.13 (m, 2.85 H), 7.12-7.08 (m, 1.95 H), 6.98-6.94 (m, 1.67 H), 6.88-6.82 (m, 2.30 H), 3.82 (s, 2.62 H), 3.79–3.77 (m, 6.49 H), 3.77–3.75 (m, 3.46 H), 3.74 (s, 0.23 H), 3.70 (s, 0.14 H), 3.23 (tt, J = 3.3, 12.7 Hz, 0.93H), 3.12-2.99 (m, 0.24 H), 2.78 (dt, J = 3.2, 14.6 Hz, 1.01 H), 2.70-2.59 (m. 2.04 H), 2.39-2.29 (m. 1.84 H), 2.26-2.18 (m. 1.02 H). 2.17-2.10 (m, 1.18 H), 2.09-1.99 (m, 2.21 H), 1.76 (s, 0.51 H), 1.59 (s, 3.00 H), 1.28 (s, 2.66 H), 1.25-1.19 (m, 0.84 H). ¹³C NMR (126 MHz, CDCl₃) δ = 208.3, 174.9, 173.3, 170.5, 158.5, 157.9, 145.5, 143.6, 138.1, 134.2, 128.7, 128.4, 127.5, 127.0, 126.9, 126.8, 126.7, 126.7, 126.2, 114.9, 113.7, 113.6, 98.7, 55.3, 55.2, 54.1, 54.0, 52.0, 51.6, 46.1, 45.6, 45.0, 38.0, 37.5, 35.3, 31.8, 28.4, 27.1. IR: 2951 (w), 1746 (m), 1711 (m), 1651 (m), 1611 (m), 1512 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for C₂₂H₂₄O₄ 352.1675; Found 352.1677.

Methyl 4"-Fluoro-6'-hydroxy-4-methoxy-1'-methyl-1',2',3',4'tetrahydro-[1,1':3',1"-terphenyl]-5'-carboxylate (7ca). Prepared following the general procedure using cyclopropane 5c (100 mg, 0.38 mmol), anisole (0.41 mL, 3.81 mmol), and $SnCl_4$ (9 μ L, 0.08 mmol) in CH₂Cl₂ (3.8 mL) stirred at room temperature for 1.5 h. After workup and purification (10% EtOAc/hexanes, $R_f = 0.33$), cyclohexenol 7ca was given as a colorless oil (79 mg, 56% yield). Complex mixture of keto-enol tautomers and diastereomers. ¹H NMR (500 MHz, CDCl₃) $\delta = 12.60$ (s, 0.96 H), 12.38 (s, 0.10 H), 7.82–7.79 (m, 0.25 H), 7.37-7.33 (m, 0.28 H), 7.29-7.18 (m, 3.63 H), 7.17-7.15 (m, 0.57 H), 7.09-7.04 (m, 2.31 H), 7.04-6.96 (m, 1.31 H), 6.96-6.91 (m, 2.17 H), 6.90–6.84 (m, 2.32 H), 3.84 (s, 0.90 H), 3.81–3.80 (m, 6.53 H), 3.79-3.77 (m, 1.39 H), 3.28-3.20 (m, 0.39 H), 3.07-2.99 (m, 0.12 H), 2.80-2.73 (m, 0.43 H), 2.69-2.59 (m, 2.13 H), 2.45 (s, 0.39 H), 2.42-2.35 (m, 0.20 H), 2.35-2.26 (m, 1.36 H), 2.24-2.18 (m, 0.30 H), 2.13–2.08 (m, 1.09 H), 2.06–1.98 (m, 1.35 H), 1.77 (s, 0.33 H), 1.61 (s, 3.00 H), 1.29 (s, 0.75 H). ¹³C NMR (126 MHz, CDCl₃) δ = 208.1, 176.4, 174.9, 173.3, 170.4, 161.3 (d, 1]C-F = 244.0 Hz), 160.7, 158.6, 158.0, 157.9, 144.6, 141.1, 141.1, 139.3, 138.8, 138.0, 134.1, 129.8, 128.2, 128.1, 128.1, 128.1, 128.1, 127.8, 127.5, 127.3, 126.9, 115.6, 115.4, 115.2, 115.1, 115.1, 115.0, 114.9, 113.8, 113.6, 98.6, 97.9, 66.8, 55.3, 55.2, 54.0, 54.0, 52.1, 51.7, 48.4, 46.3, 45.7, 45.0, 45.0, 37.7, 37.3, 36.5, 34.6, 32.0, 31.9, 28.4, 27.0, 24.2, 21.6, 14.7. ¹⁹F NMR (471 MHz, CDCl₃) $\delta = -117.21$ (quin, J = 6.0 Hz, 0.29 F), -118.01 - -118.07 (m, 0.14 F), -118.26 (quin, J = 6.0 Hz,1.00 F). IR: 2928 (w), 1744 (w), 1715 (w), 1670 (s), 1653 (s), 1508 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for $C_{22}H_{23}O_4F$ 370.1580; Found 370.1570.

Methyl 6'-Hydroxy-4-methoxy-1',3'-dimethyl-1',2',3',4'-tetrahydro-[1,1':3',1"-terphenyl]-5'-carboxylate (7da). Prepared following the general procedure using cyclopropane 5d (98 mg, 0.39 mmol), anisole (0.42 mL, 3.87 mmol), and SnCl₄ (9 μ L, 0.08 mmol) in CH₂Cl₂ (3.9 mL) stirred at room temperature for 1 h. After workup and purification (10% EtOAc/hexanes, $R_{\rm f}=0.38$), cyclohexenol 7da was given as a colorless oil (61 mg, 44% yield). Complex mixture of

keto–enol tautomers and diastereomers. 1 H NMR (500 MHz, CDCl₃) δ = 12.53 (s, 0.90 H), 12.45 (s, 0.44 H), 7.34–7.28 (m, 2.35 H), 7.25–7.18 (m, 1.91 H), 7.02–6.93 (m, 5.09 H), 6.88–6.84 (m, 1.03 H), 6.78–6.73 (m, 2.07 H), 6.52–6.48 (m, 2.00 H), 3.92–3.89 (m, 4.31 H), 3.87–3.82 (m, 0.98 H), 3.79 (s, 1.41 H), 3.70 (s, 2.90 H), 3.11 (dd, J = 2.3, 16.3 Hz, 0.50 H), 3.04 (dd, J = 1.8, 16.2 Hz, 1.00 H), 2.51–2.43 (m, 2.50 H), 2.32–2.27 (m, 0.57 H), 2.23–2.18 (m, 0.50 H), 2.08 (d, J = 14.0 Hz, 0.97 H), 1.63 (s, 2.96 H), 1.30–1.25 (m, 3.70 H), 1.20 (s, 1.45 H), 1.03 (s, 1.45 H). 13 C NMR (126 MHz, CDCl₃) δ = 175.9, 175.7, 173.3, 173.1, 157.7, 156.9, 146.1, 140.3, 138.4, 128.2, 127.6, 127.2, 127.2, 126.3, 126.0, 125.9, 125.3, 113.6, 113.1, 97.7, 97.3, 55.2, 53.8, 52.7, 51.9, 51.8, 44.2, 43.9, 36.9, 36.5, 34.4, 34.2, 32.1, 31.9, 28.3, 25.3. IR: 2953 (w), 1653 (s), 1612 (s), 1510 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for $C_{23}H_{26}O_4$ 366.1831; Found 366.1815.

Methyl 2-Hydroxy-4'-methoxy-1-methyl-5-(naphthalen-2-yl)-1,4,5,6-tetrahydro-[1,1'-biphenyl]-3-carboxylate (7ea). Prepared following the general procedure using cyclopropane 5e (100 mg, 0.35 mmol), anisole (0.38 mL, 3.52 mmol), and SnCl₄ (8 μ L, 0.07 mmol) in CH₂Cl₂ (3.5 mL) stirred at room temperature for 1 h. After workup and purification (10% EtOAc/hexanes, $R_f = 0.36$), cyclohexenol 7ea was given as a colorless oil (76 mg, 54% yield). Complex mixture of keto-enol tautomers and diastereomers. ¹H NMR (500 MHz, CDCl₃) δ = 12.65 (s, 1.40 H), 12.42 (s, 0.21 H), 7.87–7.67 (m, 10.44 H), 7.56 (br. s., 1.50 H), 7.52–7.39 (m, 7.51 H), 7.34–7.29 (m, 3.62 H), 7.27-7.25 (m, 2.26 H), 7.24-7.21 (m, 1.93 H), 7.04-7.00 (m, 1.90 H), 6.93–6.87 (m, 3.60 H), 3.86 (s, 3.13 H), 3.83–3.81 (m, 10.12 H), 3.81-3.80 (m, 3.45 H), 3.43 (tt, I = 3.3, 12.7 Hz, 1.00 H), 2.89 (dt, J = 3.2, 14.6 Hz, 1.26 H), 2.86–2.74 (m, 3.24 H), 2.57–2.43 (m, 2.93 H), 2.37–2.29 (m, 1.27 H), 2.27–2.22 (m, 1.56 H), 2.20– 2.13 (m, 2.51 H), 1.83 (s, 0.71 H), 1.65 (s, 4.45 H), 1.41 (s, 0.42 H), 1.33 (s, 2.82 H). ¹³C NMR (126 MHz, CDCl₃) δ = 208.3, 175.0, 173.4, 173.1, 170.5, 158.6, 157.9, 142.9, 142.5, 141.0, 138.1, 134.2, 133.5, 133.5, 132.5, 132.2, 128.4, 127.9, 127.6, 127.6, 127.5, 127.5, 127.4, 127.0, 126.2, 126.0, 125.9, 125.8, 125.7, 125.7, 125.4, 125.3, 124.8, 124.8, 124.7, 114.9, 113.8, 113.6, 98.7, 55.3, 55.2, 54.1, 54.1, 52.1, 51.7, 46.2, 45.6, 45.1, 45.0, 38.0, 37.4, 37.3, 36.6, 35.4, 31.8, 31.6, 28.4, 27.1. IR: 2928 (w), 1744 (m), 1713 (m), 1653 (m), 1611 (m), 1512 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for C₂₆H₂₆O₄ 402.1831;

Methyl 2-hydroxy-4'-methoxy-1-methyl-5-(thiophen-2-yl)-1,4,5,6-tetrahydro-[1,1'-biphenyl]-3-carboxylate (7fa). Prepared following the general procedure using cyclopropane 5a (101 mg, 0.40 mmol), anisole (0.43 mL, 4.00 mmol), and SnCl₄ (9 μ L, 0.08 mmol) in CH₂Cl₂ (4.0 mL) stirred at room temperature for 1 h. After workup and purification (10% EtOAc/hexanes, $R_f = 0.52$), cyclohexenol 7fa was given as a colorless oil (81 mg, 56% yield). Complex mixture of keto-enol tautomers and diastereomers. ¹H NMR (500 MHz, CDCl3) δ = 12.60 (s, 0.96 H), 12.38 (s, 0.15 H), 7.32–7.24 (m, 3.42 H), 7.19 (dd, J = 1.1, 5.0 Hz, 0.45 H), 7.18–7.13 (m, 1.13 H), 7.12-7.10 (m, 1.00 H), 6.99-6.95 (m, 1.47 H), 6.94-6.92 (m, 0.53 H), 6.91-6.84 (m, 4.55 H), 6.74 (dt, J = 1.1, 3.4 Hz, 1.00 H), 3.83 (s, 1.37 H), 3.82 (s, 3.55 H), 3.80 (s, 4.41 H), 3.78-3.77 (m, 1.33 H), 3.58-3.51 (m, 0.51 H), 2.99-2.90 (m, 1.77 H), 2.82 (ddd, J = 1.8, 5.4,15.9 Hz, 1.14 H), 2.50–2.44 (m, 0.33 H), 2.42–2.32 (m, 2.08 H), 2.28 (dt, J = 2.1, 12.9 Hz, 1.12 H), 2.18-2.07 (m, 0.85 H), 2.06-2.00 (m, 0.85 H)1.74 H), 1.77 (s, 0.54 H), 1.62-1.60 (m, 3.39 H), 1.40 (s, 0.32 H), 1.30 (s, 1.25 H). ¹³C NMR (126 MHz, CDCl₃) δ = 207.8, 174.8, 173.2, 158.6, 158.0, 149.6, 137.8, 129.4, 127.5, 127.4, 126.9, 126.8, 126.6, 126.5, 123.3, 122.9, 122.7, 122.6, 114.9, 113.8, 113.7, 98.3, 55.3, 55.2, 55.1, 53.9, 53.8, 52.1, 51.7, 47.4, 46.1, 44.9, 38.5, 36.6, 33.4, 32.5, 31.1, 28.3, 26.9. IR: 2951 (w), 2931 (w), 1744 (m), 1711 (m), 1653 (s), 1611 (s), 1510 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for C₂₀H₂₂O₄S 358.1239; Found 358.1236.

Methyl 5-((tert-Butyldiphenylsilyl)methyl)-2-hydroxy-4'-methoxy-1-methyl-1,4,5,6-tetrahydro-[1,1'-biphenyl]-3-carboxylate (7ga). Prepared following the general procedure using cyclopropane Sg (150 mg, 0.36 mmol), anisole (0.39 mL, 3.56 mmol), and SnCl₄ (9 μ L, 0.07 mmol) in CH₂Cl₂ (3.6 mL) stirred at room temperature for 27 h. After workup and purification (10% EtOAc/hexanes, $R_{\rm f}=0.62$), cyclohexenol 7ga was given as a colorless oil (109 mg, 57% yield).

Complex mixture of keto-enol tautomers and diastereomers. ¹H NMR (500 MHz, CDCl₂) δ = 12.31 (s, 0.44 H), 12.28–12.27 (m, 0.03 H), 7.75–7.72 (m, 2.06 H), 7.71–7.68 (m, 2.08 H), 7.66–7.59 (m, 0.94 H), 7.48-7.39 (m, 9.69 H), 7.39-7.36 (m, 0.93 H), 7.36-7.32 (m, 1.45 H), 7.28-7.22 (m, 2.65 H), 6.90-6.86 (m, 1.10 H), 6.68-6.65 (m, 1.05 H), 6.63–6.59 (m, 2.01 H), 6.48–6.44 (m, 1.91 H), 3.78 (s, 1.61 H), 3.75-3.74 (m, 2.93 H), 3.70-3.68 (m, 4.50 H), 3.34 (dd, I = 5.2, 13.4 Hz, 1.00 H), 2.32 (dt, I = 3.4, 14.3 Hz, 1.00 H), 2.21 (ddd, *J* = 2.1, 5.0, 15.8 Hz, 0.59 H), 2.10–2.01 (m, 1.17 H), 1.98–1.92 (m, 1.23 H), 1.90-1.82 (m, 1.37 H), 1.79-1.68 (m, 1.66 H), 1.67-1.59 (m, 1.23 H), 1.59–1.54 (m, 0.50 H), 1.47–1.41 (m, 1.43 H), 1.40 (s, 0.67 H), 1.38 (s, 1.59 H), 1.32 (d, J = 5.2 Hz, 0.44 H), 1.28 (d, J = 4.9 Hz, 0.74 H), 1.23-1.19 (m, 1.32 H), 1.18-1.15 (m, 0.78 H), 1.13-1.12 (m, 0.46 H), 1.08 (s, 0.70 H), 1.07-1.04 (m, 2.03 H), 1.02 (s, 4.10 H), 1.00 (s, 8.61 H), 0.91–0.89 (m, 4.55 H). ¹³C NMR (126 MHz, CDCl₃) δ = 208.9, 174.8, 173.2, 170.6, 157.9, 157.5, 138.2, 136.2, 136.1, 136.0, 135.9, 134.8, 134.7, 134.5, 134.1, 133.9, 129.3, 128.8, 128.7, 127.8, 127.7, 127.4, 127.3, 127.3, 126.8, 114.4, 113.3, 98.8, 55.2, 55.1, 53.7, 53.4, 51.9, 51.4, 49.3, 47.3, 44.6, 40.9, 34.0, 28.2, 27.9, 27.8, 27.7, 27.7, 26.6, 25.3, 24.8, 24.7, 23.3, 18.2, 18.0, 17.9, 16.8. IR: 2951 (w), 2857 (w), 1746 (s), 1711 (s), 1653 (m), 1611 (m), 1512 (s) cm⁻¹. HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{33}H_{41}O_4Si$ 529.2769; Found 529.2757.

Methyl 6'-Hydroxy-3,4,4"-trimethoxy-1'-methyl-1',2',3',4'-tetrahydro-[1,1':3',1"-terphenyl]-5'-carboxylate (7ab). The general procedure was followed using cyclopropane 5a (100 mg, 0.364 mmol), 1,2-dimethoxybenzene (0.47 mL, 3.65 mmol), SnCl₄ (9 µL, 0.077 mmol) and CH₂Cl₂ (3.65 mL) at room temperature for 1 h. After workup and purification (10% EtOAc/hexane, $R_f = 0.450$), cyclohexenol 7ab was afforded as a yellow oil (108 mg, 72% yield). Complex mixture of keto-enol tautomers and diastereomers. ¹H NMR (300 MHz, CDCl₃) $\delta = 12.62$ (s, 1.12 H), 12.40 (s, 0.29 H), 7.21-7.14 (m, 3.23 H), 7.07-7.01 (m, 3.20 H), 6.96-6.78 (m, 15.43 H), 6.69 (d, J = 2.2 Hz, 1 H), 3.92-3.85 (m, 19.30 H), 3.81-3.75 (m, 19.84 H), 3.30-3.17 (m, 1.31 H), 3.07-2.94 (m, 0.42 H), 2.82-2.56 (m, 4.94 H), 2.44-2.28 (m, 2.92 H), 2.28-1.95 (m, 6.91 H), 1.78 (s, 1.21 H), 1.61 (s, 4.32 H), 1.31 (s, 3 H). ¹³C NMR (75 MHz, CDCl₃) δ = 208.4, 174.7, 173.3, 170.4, 158.4, 157.9, 149.6, 148.6, 147.9, 147.4, 139.4, 138.6, 137.6, 137.1, 135.6, 134.7, 127.6, 127.6, 127.5, 119.0, 117.8, 114.1, 113.8, 113.7, 111.8, 110.7, 109.9, 109.2, 98.7, 98.0, 77.4, 76.6, 56.0, 55.9, 55.9, 55.9, 55.8, 55.2, 55.2, 55.2, 54.3, 54.2, 52.0, 51.6, 46.2, 45.9, 45.2, 37.6, 37.3, 36.3, 34.5, 32.0, 28.1, 27.2. IR: 3397 (m), 1648 (s) cm⁻¹. **HRMS (EI)** m/z: [M]⁺ Calcd for C₂₄H₂₈O₆ 412.1886; Found 412.1887.

Methyl 6'-hydroxy-2,4,4"-trimethoxy-1'-methyl-1',2',3',4'-tetrahydro-[1,1':3',1"-terphenyl]-5'-carboxylate (7ac). Prepared following the general procedure using cyclopropane 5a (77 mg, 0.28 mmol), 1,3-dimethoxybenzene (0.38 mL, 2.80 mmol), and $SnCl_4$ (6 μ L, 0.06 mmol) in CH₂Cl₂ (2.8 mL) stirred at room temperature for 1 h. After workup and purification (20% EtOAc/hexanes, $R_f = 0.44$), cyclohexenol 7ac was given as a colorless oil (102 mg, 88% yield). Complex mixture of keto-enol tautomers and diastereomers. ¹H NMR (500 MHz, CDCl₃) δ = 12.61–12.59 (m, 0.06 H), 12.48 (s, 0.21 H), 7.31 (d, J = 8.5 Hz, 1.00 H), 7.20-7.10 (m, 3.91 H), 6.88-6.81 (m, 3.35 H), 6.60 (dd, J = 2.4, 8.5 Hz, 1.05 H), 6.51 (d, J = 2.7 Hz, 1.03 H), 6.49-6.48 (m, 0.59 H), 6.46-6.44 (m, 0.39 H), 3.85 (s, 3.01 H), 3.84 (s, 0.81 H), 3.80-3.74 (m, 18.10 H), 3.74-3.69 (m, 1.86 H), 3.22-3.16 (m, 1.29 H), 3.08-3.00 (m, 0.28 H), 2.78-2.68 (m, 1.36 H), 2.65-2.61 (m, 0.24 H), 2.52-2.41 (m, 0.80 H), 2.37-2.28 (m, 0.74 H), 2.25 (d, J = 12.8 Hz, 1.04 H), 2.22-2.14 (m, 1.37 H), 1.90 (dd, J =12.8, 14.3 Hz, 1.19 H), 1.84–1.79 (m, 0.44 H), 1.75 (s, 0.77 H), 1.70– 1.66 (m, 0.75 H), 1.63–1.61 (m, 0.82 H), 1.40 (s, 0.22 H), 1.30 (s, 0.40 H), 1.27–1.23 (m, 3.55 H). ¹³C NMR (126 MHz, CDCl₃) δ = 209.3, 207.1, 170.8, 170.7, 160.0, 157.3, 137.9, 136.5, 135.7, 127.7, 127.7, 127.7, 127.6, 127.6, 127.0, 126.3, 123.8, 114.0, 113.9, 113.7, 104.9, 103.9, 99.9, 98.9, 55.4, 55.4, 55.3, 55.2, 55.2, 55.0, 54.8, 52.9, 52.0, 51.8, 51.4, 47.5, 47.4, 38.8, 37.6, 37.1, 34.9, 25.5, 24.9, 24.6, 23.5. IR: 2936 (w), 1742 (s), 1715 (s), 1611 (m), 1584 (m), 1512 (s) cm⁻¹. HRMS (EI) m/z: [M]+ Calcd for C24H28O6 412.1886; Found 412.1893.

Methyl 4-(Diphenylamino)-6'-hydroxy-4"-methoxy-1'-methyl-1',2',3',4'-tetrahydro-[1,1':3',1"-terphenyl]-5'-carboxylate (**7ad**). Prepared following the general procedure using cyclopropane 5a (100 mg, 0.37 mmol), triphenylamine (895 mg, 3.65 mmol), and SnCl₄ (9 µL, 0.07 mmol) in CH₂Cl₂ (3.7 mL) stirred at room temperature for 1 h. After workup and purification (10% EtOAc/ hexanes, $R_f = 0.36$), cyclohexenol 7ad was given as a colorless oil (135 mg, 71% yield). Complex mixture of keto-enol tautomers and diastereomers. ¹H NMR (500 MHz, CDCl₃) $\delta = 12.63$ (s, 0.88 H), 12.44 (s, 1.28 H), 7.32-7.17 (m, 25.33 H), 7.16-7.13 (m, 4.86 H), 7.13-6.99 (m, 27.85 H), 6.91-6.83 (m, 7.00 H), 3.81 (s, 3.50 H), 3.80 (s, 4.33 H), 3.79 (s, 5.27 H), 3.79 (s, 3.75 H), 3.78 (s, 2.73 H), 3.26 (tt, J = 3.3, 12.6 Hz, 1.00 H), 3.05-2.97 (m, 1.37 H), 2.79-2.73(m, 2.47 H), 2.72–2.64 (m, 1.93 H), 2.43–2.34 (m, 2.33 H), 2.34– 2.23 (m, 2.22 H), 2.15 (t, J = 13.3 Hz, 2.40 H), 2.07–2.01 (m, 1.92 H), 1.96 (dt, J = 2.2, 13.3 Hz, 1.46 H), 1.78 (s, 3.93 H), 1.63 (s, 2.95 H), 1.41 (s, 0.47 H), 1.32 (s, 2.88 H). 13 C NMR (126 MHz, CDCl₃) δ = 208.3, 176.3, 173.3, 173.2, 158.4, 158.1, 158.0, 147.7, 147.7, 147.4, 146.7, 145.8, 141.0, 140.1, 137.7, 137.2, 135.7, 135.5, 129.3, 129.1, 129.1, 127.7, 127.6, 127.6, 127.2, 127.0, 126.6, 124.7, 124.2, 124.1, 123.6, 123.6, 123.4, 123.2, 122.6, 122.6, 114.0, 113.8, 113.8, 98.8, 98.2, 55.3, 54.2, 54.1, 52.0, 51.6, 48.7, 46.1, 45.8, 45.3, 45.2, 37.7, 37.1, 36.3, 34.4, 32.1, 31.9, 28.4, 27.0, 24.6, 24.3. IR: 2930 (w), 1746 (w), 1713 (w), 1653 (m), 1611 (m), 1587 (m), 1508 (s) cm⁻¹. HRMS (ESI) m/ z: [M + Na]⁺ Calcd for C₃₄H₃₃O₄NNa 542.2302; Found 542.2291.

Methyl 4-Hydroxy-4'-methoxy-5-(4-methoxynaphthalen-1-yl)-5methyl-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-carboxylate (7ae-enol). Prepared following the general procedure using cyclopropane 5a (103 mg, 0.37 mmol), 1-methoxynaphthalene (576 mg, 3.65 mmol), and SnCl₄ (9 µL, 0.07 mmol) in CH₂Cl₂ (3.7 mL) stirred at room temperature for 18 h. After workup and purification (10% EtOAc/ hexanes, $R_f = 0.34$), cyclohexenol 7ae-enol was given as a colorless oil (49 mg, 30% yield). Mixture of diastereomers and some keto-enol tautomers. 1 H NMR (500 MHz, CDCl₃) δ = 12.74–12.73 (m, 0.04 H), 12.52 (s, 0.91 H), 8.38 (dd, J = 1.5, 8.2 Hz, 1.10 H), 8.19 (d, J = 1.5) 7.9 Hz, 0.98 H), 7.68–7.64 (m, 0.08 H), 7.61–7.59 (m, 0.21 H), 7.57 (d, J = 8.2 Hz, 1.01 H), 7.54–7.44 (m, 2.36 H), 7.41–7.38 (m, 0.10 H), 7.33-7.30 (m, 0.07 H), 7.21-7.17 (m, 2.20 H), 7.00-6.96 (m, 0.12 H), 6.94-6.90 (m, 0.19 H), 6.85-6.79 (m, 3.24 H), 6.77-6.74 (m, 0.23 H), 4.07 (s, 0.20 H), 4.00 (s, 3.23 H), 3.99 (s, 0.26 H), 3.84 (s, 0.30 H), 3.83 (s, 0.26 H), 3.82-3.80 (m, 3.18 H), 3.78-3.76 (m, 3.17 H), 3.74 (s, 0.12 H), 3.67 (s, 0.16 H), 3.47-3.39 (m, 0.11 H), 3.32-3.23 (m, 1.00 H), 3.00 (ddd, J = 2.1, 5.0, 16.1 Hz, 1.10 H), 2.89-2.82 (m, 0.18 H), 2.78 (t, J = 13.4 Hz, 1.03 H), 2.62 (dd, J =11.9, 16.2 Hz, 1.05 H), 2.55–2.48 (m, 0.10 H), 2.01 (s, 3.12 H), 1.97 (s, 0.16 H), 1.92 (s, 0.29 H), 1.83 (td, J = 2.4, 13.7 Hz, 1.02 H). ¹³C NMR (126 MHz, CDCl₃) δ = 178.6, 173.0, 158.1, 154.9, 137.3, 133.0, 131.7, 127.7, 126.6, 126.4, 124.7, 124.5, 124.1, 123.1, 114.0, 113.8, 102.9, 95.8, 55.4, 55.2, 51.7, 45.0, 44.6, 36.3, 31.5, 28.0. IR: 1647 (m), 1611 (m), 1514 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for $C_{27}H_{28}O_5$ 432.1937; Found 432.1920.

Methyl 3-(4-Methoxynaphthalen-1-yl)-5-(4-methoxyphenyl)-3methyl-2-oxocyclohexane-1-carboxylate (7ae-keto). Prepared following the general procedure using cyclopropane 5a (103 mg, 0.37 mmol), 1-methoxynaphthalene (576 mg, 3.65 mmol), and SnCl₄ (9 μ L, 0.07 mmol) in CH₂Cl₂ (3.7 mL) stirred at room temperature for 18 h. After workup and purification (10% EtOAc/hexanes, $R_f = 0.21$), cyclohexanone 7ae-keto was given as a colorless oil (64 mg, 40% yield). Mixture of diastereomers and some keto-enol tautomers. ¹H NMR (500 MHz, CDCl₃) δ = 12.73 (s, 0.07 H), 12.52 (s, 0.03 H), 8.41-8.37 (m, 1.02 H), 8.34-8.29 (m, 0.10 H), 7.90-7.85 (m, 0.99 H), 7.66 (d, J = 8.2 Hz, 1.00 H), 7.58-7.55 (m, 0.09 H), 7.54-7.49(m, 2.04 H), 7.49-7.41 (m, 0.26 H), 7.35-7.29 (m, 0.17 H), 7.27-7.22 (m, 2.18 H), 7.20-7.16 (m, 0.09 H), 6.99-6.95 (m, 0.23 H), 6.94-6.88 (m, 2.99 H), 6.76-6.73 (m, 0.23 H), 4.06 (s, 2.93 H), 4.00 (s, 0.35 H), 3.83 (s, 0.41 H), 3.82 (s, 2.82 H), 3.81 (s, 0.15 H), 3.77 (s, 0.15 H), 3.73 (s, 0.23 H), 3.66 (s, 2.92 H), 3.58-3.49 (m, 2.00 H), 3.01 (td, J = 3.1, 14.8 Hz, 1.00 H), 2.31 (q, J = 12.9 Hz, 1.04 H), 2.252.17 (m, 1.08 H), 2.09 (dd, J = 13.0, 14.8 Hz, 1.08 H), 1.97 (s, 0.21 H), 1.55 (s, 2.90 H). 13 C NMR (126 MHz, CDCl₃) δ = 213.5, 173.6, 170.1, 158.4, 155.1, 137.7, 135.2, 132.2, 131.4, 129.4, 128.0, 127.7, 127.6, 127.2, 126.7, 125.6, 125.4, 125.2, 124.3, 124.2, 123.6, 122.9, 114.1, 113.8, 113.6, 103.1, 102.6, 55.5, 55.4, 55.3, 55.3, 55.2, 53.9, 51.9, 49.3, 47.3, 39.1, 36.8, 36.3, 31.6, 27.0, 26.0. IR: 1744 (m), 1707 (m), 1514 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for $C_{27}H_{28}O_5$ 432.1937; Found 432.1918.

Methyl 6'-Hydroxy-2,4"-dimethoxy-1',5-dimethyl-1',2',3',4'-tetrahydro-[1,1':3',1"-terphenyl]-5'-carboxylate (7af). Prepared following the general procedure using cyclopropane 5a (102 mg, 0.37 mmol), 4-methylanisole (0.46 mL, 3.65 mmol), and $SnCl_4$ (9 μ L, 0.07 mmol) in CH₂Cl₂ (3.7 mL) stirred at room temperature for 3.5 h. After workup and purification (10% EtOAc/hexanes, $R_f = 0.10$), cyclohexenol 7af was given as a colorless oil (22 mg, 15% yield). Complex mixture of keto-enol tautomers and diastereomers. ¹H NMR (500 MHz, CDCl₃) $\delta = 12.62$ (s, 0.10 H), 12.50 (s, 0.76 H), 7.23-7.22 (m, 0.22 H), 7.20-7.16 (m, 5.20 H), 7.14 (d, J = 2.7 Hz, 1.03 H), 7.07-7.01 (m, 3.10 H), 6.90-6.86 (m, 1.09 H), 6.86-6.82 (m, 4.29 H), 6.82-6.77 (m, 2.35 H), 3.83 (s, 2.65 H), 3.81-3.80 (m, 2.04 H), 3.79-3.77 (m, 10.14 H), 3.77-3.75 (m, 4.87 H), 3.74 (s, 2.70 H), 3.18 (tt, J = 3.3, 12.7 Hz, 1.17 H), 3.09–3.02 (m, 0.93 H), 2.79-2.72 (m, 1.30 H), 2.66 (1, J = 12.8 Hz, 1.08 H), 2.48 (q, J = 13.3Hz, 2.21 H), 2.42-2.39 (m, 0.29 H), 2.38 (s, 0.90 H), 2.35 (d, J = 3.4Hz, 0.57 H), 2.33-2.31 (m, 3.03 H), 2.30-2.25 (m, 4.76 H), 1.94-1.90 (m, 0.58 H), 1.88–1.86 (m, 0.30 H), 1.83 (dt, I = 3.4, 13.4 Hz, 1.17 H), 1.78 (s, 2.69 H), 1.72 (s, 0.36 H), 1.70 (dt, J = 2.4, 13.1 Hz, 1.08 H), 1.65 (s, 3.01 H). 13 C NMR (126 MHz, CDCl₃) δ = 206.8, 178.6, 173.5, 170.8, 158.0, 153.3, 136.5, 134.6, 134.5, 129.9, 128.3, 128.3, 127.9, 127.7, 127.6, 127.6, 126.8, 113.9, 113.7, 112.2, 111.7, 95.0, 55.7, 55.3, 55.3, 55.2, 54.7, 52.0, 51.4, 50.9, 47.4, 43.8, 43.6, 37.7, 36.2, 34.8, 31.5, 25.5, 23.4, 20.9, 20.8. IR: 2951 (w), 1744 (s), 1709 (s), 1647 (m), 1611 (m), 1512 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for C₂₄H₂₈O₅ 396.1937; Found 396.1929.

Methyl 5-(Furan-2-yl)-4-hydroxy-4'-methoxy-5-methyl-1,2,5,6tetrahydro-[1,1'-biphenyl]-3-carboxylate (11aa). The general procedure was followed using cyclopropane 5a (100 mg, 0.364 mmol), furan 10a (0.27 mL, 3.72 mmol), $SnCl_4$ (9 μ L, 0.077 mmol) and CH₂Cl₂ (3.65 mL) at room temperature for 1.5 h. After workup and purification (15% EtOAc/hexane, $R_f = 0.650$), cyclohexenol 11aa was afforded as a yellow oil (82.3 mg, 66% yield). Complex mixture of keto-enol tautomers and diastereomers. ¹H NMR (400 MHz, CDCl₃) δ = 12.56 (s, 0.85 H), 12.43 (s, 0.61 H), 7.47 (dd, J = 0.8, 1.8 Hz, 0.33 H), 7.43 (dd, J = 0.9, 1.9 Hz, 0.09 H), 7.41 (dd, J = 0.9, 1.9 Hz, 0.67 H), 7.37 (dd, J = 0.9, 1.9 Hz, 0.89 H), 7.25-7.20 (m, 2.32 H), 7.17-7.13 (m, 1.95 H), 6.93–6.90 (m, 1.80 H), 6.90–6.85 (m, 2.81 H), 6.45 (dd, *J* = 1.9, 3.4 Hz, 0.35 H), 6.37 (dd, *J* = 1.9, 3.1 Hz, 0.72 H), 6.35 (dd, J = 1.8, 3.3 Hz, 1 H), 6.29 (dd, J = 0.8, 3.3 Hz, 0.72 H), 6.26 (dd, J = 0.8, 3.3 Hz, 0.72 H)J = 0.8, 3.3 Hz, 0.37 H), 6.24 (dd, <math>J = 0.9, 3.4 Hz, 0.08 H), 6.20 (dd, J)= 0.8, 3.3 Hz, 0.92 H), 3.83 (s, 1.56 H), 3.83 (s, 2.27 H), 3.82 (s, 3 H), 3.80 (s, 3.92 H), 3.78 (s, 1.98 H), 3.42-3.32 (m, 0.50 H), 3.07-2.98 (m, 0.74 H), 2.95-2.86 (m, 1 H), 2.76 (dd, J = 2.3, 4.8 Hz, 0.34 H),2.74-2.70 (m, 1.13 H), 2.68 (dd, J = 2.1, 5.1 Hz, 0.75 H), 2.54-2.26(m, 4.63 H), 2.05–1.86 (m, 2.44 H), 1.75 (s, 2.21 H), 1.64 (s, 3 H), 1.40 (s, 1.15 H). ¹³C NMR (101 MHz, CDCl₃) δ = 173.3, 173.3, 173.1, 172.5, 170.3, 158.4, 158.2, 158.1, 158.0, 155.8, 142.2, 141.4, 141.2, 137.4, 137.1, 127.7, 127.6, 127.6, 114.0, 114.0, 114.0, 113.8, 113.8, 110.6, 110.0, 110.0, 106.0, 105.8, 98.2, 97.6, 77.3, 76.7, 55.2, 54.4, 52.1, 51.6, 51.1, 46.5, 43.5, 42.7, 42.4, 42.4, 37.5, 37.1, 35.6, 35.3, 31.7, 24.9, 24.6, 24.5, 23.5. IR: 2941 (w), 1611 (w) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for C₂₀H₂₂O₅ 342.1467; Found 342.1467.

Methyl 4-Hydroxy-4'-methoxy-5-methyl-5-(thiophen-2-yl)-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-carboxylate (11ab). The general procedure was followed using cyclopropane 5a (100 mg, 0.364 mmol), thiophene 10b (0.3 mL, 3.75 mmol), SnCl₄ (9 μL, 0.077 mmol) and CH₂Cl₂ (3.65 mL) at room temperature for 1 h. After workup and purification by prepTLC (10% EtOAc/hexane, R_f = 0.450), cyclohexenol 11ab was afforded as a yellow oil (96.6 mg, 74% yield). Complex mixture of keto—enol tautomers and diastereomers. ¹H NMR (400 MHz, CDCl₃) δ = 12.67 (s, 0.18 H), 12.64 (s, 1 H), 12.51 (s, 0.17 H), 12.33 (s, 0.07 H), 7.44 (dd, J = 3.0, 5.0 Hz, 0.09 H), 7.35–7.32 (m, 0.33 H), 7.31–7.29 (m, J = 3.3 Hz, 0.21 H), 7.26–7.20

(m, 2.66 H), 7.17–7.10 (m, 3.22 H), 7.08–7.04 (m, 0.55 H), 7.01 (dd, J=1.3, 3.8 Hz, 1.20 H), 6.98–6.94 (m, 1.12 H), 6.94–6.83 (m, 4.76 H), 3.97 (dd, J=5.5, 13.3 Hz, 0.40 H), 3.84–3.78 (m, 12.65 H), 3.48–3.39 (m, 0.50 H), 2.96–2.87 (m, 1.10 H), 2.79–2.64 (m, 2.37 H), 2.45–2.20 (m, 4.26 H), 2.18–2.03 (m, 2 H), 1.88 (s, 0.31 H), 1.86 (s, 0.56 H), 1.71 (s, 3 H), 1.64 (s, 0.33 H), 1.62 (s, 0.61 H), 1.45 (s, 1 H), 1.35 (s, 0.27 H). 13 C NMR (101 MHz, CDCl₃) $\delta=205.8$, 174.6, 174.4, 173.4, 173.3, 170.4, 158.1, 150.7, 147.6, 147.0, 137.5, 137.3, 135.4, 127.8, 127.7, 127.7, 127.6, 127.6, 127.5, 126.4, 126.3, 126.1, 124.4, 124.4, 124.3, 123.9, 123.6, 123.5, 114.1, 113.9, 113.9, 113.8, 97.9, 97.8, 97.2, 77.3, 76.7, 55.3, 55.2, 53.9, 52.4, 51.7, 48.9, 47.9, 46.6, 45.5, 43.9, 43.5, 37.4, 36.8, 36.2, 34.9, 31.9, 31.6, 29.0, 28.9, 27.4, 26.7. IR: 2929 (w), 1745 (w), 1649 (m), 1610 (m) cm $^{-1}$. HRMS (EI) m/z: [M] $^+$ Calcd for $C_{20}H_{22}O_4$ S 358.1239; Found 358.1237.

Methyl 4-Hydroxy-4'-methoxy-5-(2-methoxythiophen-3-yl)-5methyl-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-carboxylate (**11ac**). The general procedure was followed using cyclopropane 5a (100 mg, 0.364 mmol), 2-methoxythiophene 10c (0.37 mL, 3.67 mmol), SnCl₄ (9 µL, 0.077 mmol) and CH₂Cl₂ (3.65 mL) at room temperature for 1.5 h. After workup and purification (10% EtOAc/ hexane, $R_f = 0.547$), cyclohexenol 11ac was afforded as a yellow oil (106 mg, 75% yield). Complex mixture of keto-enol tautomers and diastereomers. ¹H NMR (400 MHz, CDCl₃) δ = 12.61 (s, 0.91 H), 12.50 (s, 0.77 H), 12.32 (s, 0.29 H), 7.24-7.14 (m, 5.67 H), 6.93-6.85 (m, 5.86 H), 6.81 (d, J = 4.0 Hz, 0.18 H), 6.64 (d, J = 3.8 Hz, 0.86H), 6.57-6.55 (m, 1.27 H), 6.55-6.53 (m, 0.13 H), 6.51-6.50 (m, 0.17 H), 6.49 (d, I = 4.0 Hz, 0.17 H), 6.44 (d, I = 3.8 Hz, 0.28 H), 6.11-6.07 (m, 0.51 H), 6.07-6.04 (m, 1.21 H), 6.04-6.02 (m, 1.22 H), 5.96 (d, J = 4.0 Hz, 0.16 H), 4.08-4.02 (m, 0.42 H), 4.02-3.98(m, 0.27 H), 3.92 (s, 0.81 H), 3.90-3.89 (m, 1.28 H), 3.88 (s, 6.67 H), 3.86 (s, 0.58 H), 3.84-3.82 (m, 5.21 H), 3.81 (s, 3.48 H), 3.81-3.79 (m, 5.24 H), 3.79 (s, 2.70 H), 3.04–2.88 (m, 2.61 H), 2.80–2.68 (m, 2.40 H), 2.65 (dd, I = 1.9, 5.1 Hz, 0.65 H), 2.55 (td, I = 3.3, 14.3 Hz, 0.38 H), 2.44-2.27 (m, 4.66 H), 2.22-2.16 (m, 1.44 H), 2.11-2.05 (m, 1.26 H), 2.04 (s, 0.31 H), 2.01 (s, 0.49 H), 1.97 (s, 0.21 H), 1.88 (s, 1 H), 1.77 (s, 2.51 H), 1.64 (s, 3 H), 1.41 (s, 0.70 H). ¹³C NMR (101 MHz, CDCl₃) δ = 173.3, 173.2, 173.1, 172.9, 164.9, 164.5, 158.1, 158.0, 137.3, 137.0, 136.8, 136.3, 127.8, 127.7, 127.6, 121.4, 121.1, 114.0, 113.9, 113.9, 113.8, 102.6, 97.9, 97.2, 77.3, 76.7, 60.2, 60.2, 60.1, 60.0, 59.9, 55.3, 55.2, 53.8, 52.4, 51.7, 47.9, 47.3, 47.2, 46.1, 43.8, 43.6, 39.7, 36.1, 35.0, 34.9, 31.8, 31.6, 31.3, 28.6, 26.0. IR: 2991 (w), 1735 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for $C_{21}H_{24}O_5S$ 388.1344; Found 388.1339.

Methyl 5-(2,5-Dimethylfuran-3-yl)-4-hydroxy-4'-methoxy-5methyl-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-carboxylate (11ad). The general procedure was followed using cyclopropane 5a (100 mg, 0.364 mmol), 2,5-dimethylfuran 10d (0.39 mL, 3.66 mmol), InCl₃ (9 mg, 0.041 mmol) and CH₂Cl₂ (3.65 mL) at room temperature for 24 h. After workup and purification (10% EtOAc/hexane, $R_f = 0.590$), cyclohexenol 11ad was afforded as a yellow oil (61.9 mg, 46% yield). Complex mixture of keto-enol tautomers and diastereomers. ¹H NMR (300 MHz, CDCl₃) $\delta = 12.56$ (s, 0.61 H), 12.48 (s, 0.49 H), 7.20-7.14 (m, 2.78 H), 7.12-7.07 (m, 2.07 H), 6.90-6.80 (m, 5.19 H), 5.91 (s, 0.77 H), 5.80 (s, 1 H), 3.84-3.72 (m, 15.96 H), 3.01-2.81 (m, 1.34 H), 2.79-2.56 (m, 4.08 H), 2.36-2.16 (m, 17.81 H), 2.10-1.83 (m, 7.47 H), 1.67 (s, 2.89 H), 1.51 (s, 3 H), 1.27-1.20 (m, 3.06 H). ¹³C NMR (101 MHz, CDCl₃) δ = 175.9, 174.8, 173.3, 173.1, 158.1, 158.0, 148.5, 144.6, 144.5, 137.7, 137.2, 136.9, 127.7, 127.7, 127.6, 125.0, 123.9, 116.5, 114.0, 113.8, 113.8, 113.8, 106.6, 106.4, 99.6, 98.0, 97.1, 77.3, 76.7, 55.3, 51.6, 46.0, 45.5, 40.3, 39.9, 39.3, 38.2, 35.7, 35.1, 32.1, 31.9, 31.7, 26.6, 25.7, 13.4, 13.4, 13.2, 13.0. IR: 2918 (w), 1653 (m), 1610 (m) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for C22H26O5 370.1780; Found 370.1773.

Methyl 5-(2,5-Dimethylthiophen-3-yl)-4-hydroxy-4'-methoxy-5-methyl-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-carboxylate (11ae). The general procedure was followed using cyclopropane 5a (100 mg, 0.364 mmol), 2,5-dimethylthiophene 10e (0.42 mL, 3.69 mmol), SnCl₄ (9 μ L, 0.077 mmol) and CH₂Cl₂ (3.65 mL) at room temperature for 1.5 h. After workup and purification (25% EtOAc/hexane, $R_{\rm f}=0.810$), cyclohexenol 11ae was afforded as a yellow oil

(122.4 mg, 87% yield). Complex mixture of keto—enol tautomers and diastereomers. $^1{\rm H}$ NMR (300 MHz, CDCl₃) $\delta=12.60$ (s, 0.11 H), 12.51 (s, 0.02 H), 12.30 (s, 0.02 H), 7.21–7.15 (m, 2.14 H), 7.10–7.06 (m, 0.40 H), 6.91–6.85 (m, 2.14 H), 6.84–6.80 (m, 0.49 H), 6.69 (s, 1 H), 6.48 (s, 0.16 H), 3.93–3.85 (m, 1 H), 3.80 (s, 3 H), 3.79–3.75 (m, 4.66 H), 3.37–3.21 (m, 1.12 H), 2.71–2.61 (m, 1.42 H), 2.45 (s, 3 H), 2.39–2.19 (m, 7.31 H), 1.99–1.83 (m, 1.56 H), 1.60 (s, 0.52 H), 1.26 (s, 3 H). $^{13}{\rm C}$ NMR (101 MHz, CDCl₃) $\delta=215.8$, 176.1, 175.4, 173.4, 173.0, 158.1, 158.0, 146.0, 141.0, 139.5, 137.8, 137.2, 134.4, 133.9, 130.5, 130.4, 127.7, 127.6, 127.6, 127.4, 126.0, 114.1, 113.8, 113.7, 98.1, 96.9, 77.3, 76.7, 55.3, 51.6, 45.3, 45.2, 44.0, 43.2, 35.7, 35.1, 32.1, 31.7, 27.0, 26.6, 15.2, 15.0, 14.5, 14.1. IR: 2928 (w), 1653 (s) cm $^{-1}$ HRMS (EI) m/z: [M] $^+$ Calcd for ${\rm C}_{22}{\rm H}_{26}{\rm O}_4{\rm S}$ 386.1552; Found 386.1551.

Methyl 5-(Benzo[b]thiophen-3-yl)-4-hydroxy-4'-methoxy-5methyl-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-carboxylate (**11af**). The general procedure was followed using cyclopropane 5a (100 mg, 0.364 mmol), 1-benzothiophene 10f (0.49 g, 3.65 mmol), SnCl₄ $(9 \mu L, 0.077 \text{ mmol})$ and CH_2Cl_2 (3.65 mL) at room temperature for 1 h. After workup and purification (15% EtOAc/hexane, $R_f = 0.540$), cyclohexenol 11af was afforded as a yellow oil (108.7 mg, 73% yield). Complex mixture of keto-enol tautomers and diastereomers. ¹H NMR (400 MHz, CDCl₃) $\delta = 12.75$ (s, 0.36 H), 12.45 (s, 0.39 H), 8.04-7.99 (m, 0.39 H), 7.96-7.82 (m, 2.67 H), 7.75-7.69 (m, 1.15 H), 7.53 (s, 0.97 H), 7.44-7.31 (m, 4.97 H), 7.30-7.18 (m, 4.53 H), 7.04-6.99 (m, 0.81 H), 6.97-6.90 (m, 2.34 H), 6.89-6.83 (m, 1.34 H), 6.82-6.77 (m, 0.74 H), 3.87-3.83 (m, 6.07 H), 3.81-3.80 (m, 2.21 H), 3.77 (s, 1.05 H), 3.74 (s, 2.95 H), 3.63 (dd, *J* = 5.5, 13.1 Hz, 1.89 H), 3.25-3.14 (m, 0.51 H), 3.00-2.89 (m, 1.57 H), 2.82-2.75 (m, 0.47 H), 2.74–2.53 (m, 2.04 H), 2.43–2.23 (m, 3.16 H), 2.21– 2.11 (m, 1.29 H), 2.06 (t, J = 12.8 Hz, 0.57 H), 2.01-1.94 (m, 1.61H), 1.88 (s, 1.25 H), 1.50 (s, 3 H). 13 C NMR (101 MHz, CDCl₃) δ = 209.5, 175.4, 172.9, 170.1, 158.5, 158.1, 141.5, 141.1, 140.5, 137.4, 137.0, 136.8, 136.2, 135.1, 127.7, 127.6, 124.6, 124.5, 124.0, 123.9, 123.7, 123.6, 123.4, 123.2, 123.1, 122.6, 122.5, 122.4, 114.1, 113.8, 113.7, 97.2, 77.3, 76.7, 55.3, 55.2, 55.2, 54.3, 53.0, 52.0, 51.8, 51.7, 48.4, 45.2, 43.6, 43.5, 38.3, 37.1, 36.0, 31.8, 26.2, 25.1. IR: 3476 (w) cm⁻¹, 1653 cm⁻¹ (s). HRMS (EI) m/z: [M]⁺ Calcd for $C_{24}H_{24}O_4S$ 408.1395; Found 408.1393.

Methyl 4-hydroxy-4'-methoxy-5-methyl-5-(1-tosyl-1H-indol-3yl)-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-carboxylate (11ag). Prepared following the general procedure using cyclopropane 5a (88 mg, 0.32 mmol), N-tosylindole 10g (880 mg, 3.24 mmol), and SnCl₄ (8 μL, 0.06 mmol) in CH₂Cl₂ (3.2 mL) stirred at room temperature for 1 h. After workup and purification (10% EtOAc/hexanes, R_f = 0.08), cyclohexenol 11ag was given as a colorless oil (125 mg, 71% yield). Complex mixture of keto-enol tautomers and diastereomers. ¹H NMR (500 MHz, CDCl₃) $\delta = 12.67$ (s, 0.95 H), 12.34 (s, 0.55 H), 8.04-7.99 (m, 1.55 H), 7.96 (d, J = 8.2 Hz, 0.64 H), 7.82-7.79 (m, 1.33 H), 7.77-7.72 (m, 3.27 H), 7.64-7.60 (m, 1.54 H), 7.52 (s, 0.63 H), 7.50-7.46 (m, 0.63 H), 7.39 (dd, J = 0.9, 7.9 Hz, 0.66 H), 7.37-7.33 (m, 1.70 H), 7.30–7.25 (m, 3.61 H), 7.23–7.17 (m, 6.14 H), 7.17-7.13 (m, 1.99 H), 6.99-6.95 (m, 0.26 H), 6.94-6.90 (m, 3.16 H), 6.88-6.85 (m, 0.21 H), 6.85-6.81 (m, 1.29 H), 6.79-6.74 (m, 2.00 H), 3.84 (s, 2.92 H), 3.83 (s, 1.63 H), 3.79-3.78 (m, 2.02 H), 3.78-3.77 (m, 1.90 H), 3.76-3.74 (m, 3.09 H), 3.71 (s, 1.58 H), 3.55 (dd, J = 5.2, 13.4 Hz, 0.58 H), 3.49-3.40 (m, 0.73 H), 3.12-3.04 (m, 0.73 H)0.64 H), 2.78 (s, 1.25 H), 2.66–2.60 (m, 1.05 H), 2.56–2.39 (m, 3.61 H), 2.36 (s, 2.07 H), 2.34-2.32 (m, 5.37 H), 2.32-2.27 (m, 1.21 H), 2.24-2.18 (m, 0.71 H), 2.10 (dd, J = 12.8, 14.3 Hz, 0.76 H), 2.00 (s, 0.31 H), 1.98 (s, 0.50 H), 1.96–1.93 (m, 0.51 H), 1.86–1.83 (m, 1.90 H), 1.82 (dt, J = 13.4, 2.3 Hz, 0.73 H), 1.72 (s, 3.05 H), 1.48 (s, 0.34 H), 1.41–1.38 (m, 1.99 H), 1.28–1.24 (m, 1.16 H), 1.22 (s, 0.33 H). ¹³C NMR (126 MHz, CDCl₃) δ = 208.3, 174.6, 173.7, 173.4, 172.9, 170.1, 158.1, 158.0, 145.3, 144.8, 144.8, 137.2, 136.9, 135.9, 135.6, 135.6, 135.2, 135.1, 134.9, 134.9, 130.0, 129.9, 129.8, 128.8, 128.3, 127.9, 127.7, 127.7, 127.7, 127.6, 126.8, 126.8, 126.7, 125.2, 125.0, $124.4,\ 124.3,\ 123.7,\ 123.6,\ 123.4,\ 123.1,\ 123.0,\ 122.9,\ 121.2,\ 120.3,$ 120.3, 114.2, 114.1, 113.9, 113.8, 113.8, 113.7, 98.3, 97.5, 55.3, 55.3, 55.2, 54.2, 52.1, 51.8, 51.8, 50.0, 47.3, 44.3, 43.3, 42.1, 41.0, 37.9, 37.3,

36.6, 36.0, 35.1, 31.8, 31.6, 25.6, 25.3, 24.9, 21.6, 21.5. IR: 1744 (m), 1715 (m), 1653 (s), 1611 (s), 1514 (s) cm⁻¹. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₁H₃₁O₆NSNa 568.1764; Found 568.1753.

Methyl 4-Hydroxy-4'-methoxy-5-methyl-5-(3-methyl-1-tosyl-1Hindol-2-yl)-1,2,5,6-tétrahydro-[1,1'-biphenyl]-3-carboxylate (**11ah**). Prepared following the general procedure using cyclopropane 5a (100 mg, 0.37 mmol), N-tosyl-3-methylindole 10h (1.04 g, 3.65 mmol), and SnCl₄ (9 μL, 0.07 mmol) in CH₂Cl₂ (3.6 mL) stirred at room temperature for 1 h. After workup and purification (10% EtOAc/ hexanes, $R_f = 0.48$), cyclohexenol 11ah was given as a colorless oil (5 mg, trace yield). Complex mixture of keto-enol tautomers and diastereomers. Could not fully characterize. ¹H NMR (500 MHz, CDCl₃) $\delta = 12.55$ (s, 0.29 H), 12.32 (s, 0.93 H), 7.62–7.54 (m, 2.27 H), 7.50-7.47 (m, 0.53 H), 7.37-7.31 (m, 1.84 H), 7.24-7.14 (m, 8.82 H), 7.13-7.07 (m, 2.30 H), 6.97-6.94 (m, 1.19 H), 6.93-6.89 (m, 1.63 H), 6.85-6.81 (m, 2.58 H), 6.77-6.75 (m, 0.91 H), 3.85 (s, 1.01 H), 3.82 (s, 2.01 H), 3.81 (s, 3.06 H), 3.78-3.77 (m, 3.68 H), 3.75-3.73 (m, 3.21 H), 3.58-3.50 (m, 1.09 H), 3.17-3.09 (m, 1.35 H), 3.03-2.96 (m, 0.89 H), 2.93-2.81 (m, 2.87 H), 2.75-2.69 (m, 0.63 H), 2.57-2.50 (m, 1.73 H), 2.46 (s, 0.46 H), 2.39 (d, J = 1.2 Hz, 1.85 H), 2.35-2.32 (m, 3.52 H), 2.31-2.29 (m, 1.22 H), 2.12 (s, 3.00 H), 2.01-1.99 (m, 1.51 H).

Krapcho Decarbalkoxylations. *General Procedure.* A flask with a stir bar was charged with sodium chloride (3.0 equiv) and water (3 drops). The appropriate cyclohexenol was added (1.0 equiv., as a solution in DMF). The volume of DMF used was such that the final concentration of cyclohexenol in DMF was 0.25 M. The reaction apparatus was then evacuated and refilled with nitrogen three times. The reaction was heated to reflux and monitored by TLC until complete conversion of the cyclohexenol was observed. The reaction was quenched with water (1 mL) and extracted three times with Et₂O. The combined organic layers were washed three times with brine, dried over Na₂SO₄, and concentrated under reduced pressure. ¹H NMR spectra of the crude mixtures were used to determine diastereomeric ratios. The resulting mixtures were purified by silica gel flash chromatography using EtOAc/hexanes as the eluent.

(2R,4R)/(2S,4S)-2,4-Bis(4-methoxyphenyl)-2-methylcyclohexan-1one (9aa). Prepared according to the general procedure using cyclohexenol 7aa (104 mg, 0.27 mmol) and NaCl (46 mg, 0.78 mmol) in DMF (1.04 mL) and H₂O (3 drops) heated to reflux for 20 h. After workup and purification (10% EtOAc/hexanes, $R_f = 0.48$), cyclohexanone 9aa was given as a colorless oil (55 mg, 63% yield). (Diastereomeric ratio = 7.7:1). Only major diastereomer isolated. ¹H NMR (500 MHz, CDCl₃) $\delta = 7.20 - 7.13$ (m, 4 H), 6.95 - 6.91 (m, 2 H), 6.90-6.86 (m, 2 H), 3.82 (s, 3 H), 3.81 (s, 3 H), 3.17 (tt, J = 3.2, 12.6 Hz, 3 H), 2.75 (td, J = 3.2, 14.4 Hz, 1 H), 2.61 (dt, J = 6.0, 14.0 Hz, 1 H), 2.41-2.36 (m, 1 H), 2.12-2.05 (m, 1 H), 2.00-1.87 (m, 2 H), 1.27 (s, 3 H). 13 C NMR (126 MHz, CDCl₃) δ = 213.6, 158.3, 158.2, 136.8, 135.1, 127.5, 126.9, 114.5, 114.0, 55.3, 55.2, 53.4, 45.6, 39.4, 38.3, 35.6, 28.6. IR: 2959 (w), 2928 (w), 2836 (w), 1705 (s), 1510 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for $C_{21}H_{24}O_3$ 324.1725; Found 324.1723.

(2R,4R)/(2S,4S)-2-(4-Methoxyphenyl)-2-methyl-4-phenylcyclohexan-1-one (9ba). Prepared according to the general procedure using 7ba (112 mg, 0.32 mmol) and NaCl (56 mg, 0.95 mmol) in DMF (1.27 mL) and H₂O (3 drops) heated to reflux for 18 h. After workup and purification (10% EtOAc/hexanes, $R_{\rm f}$ = 0.42), compound 9ba was given as a colorless oil (54 mg, 58% yield). (Diastereomeric ratio = 11.7:1). Only major diastereomer isolated. ¹H NMR (500 MHz, CDCl₃) δ = 7.37–7.32 (m, 2 H), 7.28–7.23 (m, 3 H), 7.19–7.14 (m, 2 H), 6.96–6.92 (m, 7 H), 3.83 (s, 3 H), 3.26–3.19 (m, 1 H), 2.79 (td, J = 3.2, 14.3 Hz, 1 H), 2.63 (dt, J = 6.1, 13.9 Hz, 1 H), 2.43–2.38 (m, 1 H), 2.15–2.09 (m, 1 H), 2.04–1.92 (m, 2 H), 1.28 (s, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ = 213.5, 158.3, 144.7, 135.1, 128.6, 126.9, 126.7, 126.6, 114.5, 55.3, 53.4, 45.4, 39.3, 39.2, 35.4, 28.6. IR: 2961 (w), 2928 (w), 1705 (s), 1510 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for C₂₀H₂₂O₂ 294.1620; Found 294.1625.

(2R,4R)/(2S,4S)-4-(4-Fluorophenyl)-2-(4-methoxyphenyl)-2-methylcyclohexan-1-one (9ca). Prepared according to the general procedure using 7ca (80 mg, 0.21 mmol) and NaCl (38 mg, 0.65

mmol) in DMF (0.86 mL) and $\rm H_2O$ (3 drops) heated to reflux for 2 d. After workup and purification (10% EtOAc/hexanes, $R_{\rm f}=0.49$), compound **9ca** was given as a colorless oil (38 mg, 57% yield). (Diastereomeric ratio = 10.5:1). Only major diastereomer isolated. $^{1}\rm H$ NMR (500 MHz, CDCl₃) $\delta=7.23-7.19$ (m, 2 H), 7.16-7.12 (m, 2 H), 7.05-6.99 (m, 2 H), 6.95-6.91 (m, 2 H), 3.82 (s, 3 H), 3.20 (tt, J=3.3, 12.6 Hz, 1 H), 2.75 (td, J=3.2, 14.3 Hz, 1 H), 2.61 (dt, J=6.1, 14.0 Hz, 1 H), 2.42–2.37 (m, 1 H), 2.07 (d, J=3.4 Hz, 1 H), 1.99–1.86 (m, 2 H), 1.27 (s, 3 H). $^{13}\rm C$ NMR (126 MHz, CDCl₃) $\delta=213.3$, 161.5 (d, 1JC-F = 243 Hz), 158.3, 140.4, 140.4, 135.0, 128.1, 128.0, 126.9, 115.5, 115.3, 114.6, 55.3, 53.4, 45.5, 39.2, 38.5, 35.6, 28.6. $^{19}\rm F$ NMR (471 MHz, CDCl₃) $\delta=-117.69$ (quin, J=6.0 Hz, 1 F). IR: 2929 (w), 1705 (s), 1508 (s) cm $^{-1}$ HRMS (EI) m/z: [M] $^+$ Calcd for $C_{20}H_{21}O_{2}\rm F$ 312.1526; Found 312.1522.

2-(4-Methoxyphenyl)-2,4-dimethyl-4-phenylcyclohexan-1-one (9da). Prepared according to the general procedure using cyclohexenol 7da (61 mg, 0.17 mmol) and NaCl (29 mg, 0.49 mmol) in DMF (0.65 mL) and H₂O (3 drops) heated to reflux for 1 h. After workup and purification (10% EtOAc/hexanes, $R_f = 0.29$), compound 9da was given as a colorless oil (31 mg, 61% yield). (Diastereomeric ratio = 2.0:1). ¹H NMR (500 MHz, CDCl₃) $\delta = 7.45 - 7.41$ (m, 1 H), 7.38– 7.33 (m, 1.32 H), 7.26–7.22 (m, 2.76 H), 7.22–7.15 (m, 3.40 H), 7.12-7.08 (m, 1 H), 6.91-6.87 (m, 1.15 H), 6.80-6.76 (m, 2 H), 6.59-6.55 (m, 2 H), 3.81 (s, 1.70 H), 3.69 (s, 3 H), 3.13 (dd, J = 1.5, 15.0 Hz, 1 H), 2.90-2.83 (m, 1 H), 2.77 (ddd, *J* = 5.6, 7.9, 16.7 Hz, 1 H), 2.62-2.55 (m, 1.63 H), 2.44 (dddd, J = 1.4, 5.8, 8.4, 14.0 Hz, 1H), 2.35 (dt, J = 4.6, 12.8 Hz, 0.61 H), 2.19 (d, J = 14.6 Hz, 1 H), 2.13-2.05 (m, 1.66 H), 1.90-1.83 (m, 1 H), 1.34 (s, 3 H), 1.30 (s, 3 H), 1.22 (s, 1.70 H), 1.14 (s, 1.69 H). 13 C NMR (126 MHz, CDCl₃) δ = 215.2, 214.8, 158.0, 157.7, 149.5, 148.7, 136.8, 134.9, 128.4, 128.0,127.1, 126.9, 126.0, 125.5, 125.5, 125.1, 113.9, 113.4, 55.2, 55.1, 52.5, 50.5, 50.3, 37.9, 37.8, 37.0, 37.0, 36.6, 33.6, 33.2, 29.5, 29.1, 28.2. IR: 2963 (w), 2930 (w), 1705 (s), 1510 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for C₂₁H₂₄O₂ 308.1776; Found 308.1772.

(2R,4R)/(2S,4S)-2-(4-Methoxyphenyl)-2-methyl-4-(naphthalen-2yl)cyclohexan-1-one (9ea). Prepared according to the general procedure using 7ea (88 mg, 0.22 mmol) and NaCl (39 mg, 0.67 mmol) in DMF (0.90 mL) and H₂O (3 drops) heated to reflux for 2.5 h. After workup and purification (10% EtOAc/hexanes, $R_f = 0.32$), compound 9ea was given as a colorless oil (49 mg, 65% yield). Major diastereomer. ¹H NMR (500 MHz, CDCl₃) $\delta = 7.86-7.80$ (m, 3 H), 7.70 (s, 1 H), 7.52-7.44 (m, 2 H), 7.41 (dd, J = 1.5, 8.5 Hz, 1 H), 7.23-7.18 (m, 2 H), 7.00-6.95 (m, 2 H), 3.85 (s, 3 H), 3.40 (tt, J =3.1, 12.5 Hz, 1 H), 2.88 (td, J = 3.2, 14.3 Hz, 1 H), 2.69 (dt, J = 6.1, 13.9 Hz, 1 H), 2.46 (ddd, J = 2.4, 4.0, 13.7 Hz, 1 H), 2.25–2.17 (m, 1 H), 2.17–2.02 (m, 2 H), 1.32 (s, 3 H). ¹³C NMR (126 MHz, CDCl₃) $\delta = 213.4,\, 158.3,\, 142.1,\, 135.1,\, 133.5,\, 132.3,\, 128.2,\, 127.6,\, 127.5,\, 127.0,\,$ 126.1, 125.5, 125.5, 124.7, 114.6, 55.3, 53.4, 45.3, 39.3, 39.2, 35.3, 28.6. IR: 2963 (w), 2928 (w), 2911 (w), 1705 (s), 1510 (s) cm⁻¹. HRMS (EI) m/z: [M]+ Calcd for C₂₄H₂₄O₂ 344.1776; Found 344.1768.

(2S,4R)/(2R,4S)-2-(4-Methoxyphenyl)-2-methyl-4-(naphthalen-2yl)cyclohexan-1-one (epi-9ea). Prepared according to the general procedure using 7ea (88 mg, 0.22 mmol) and NaCl (39 mg, 0.67 mmol) in DMF (0.90 mL) and H₂O (3 drops) heated to reflux for 2.5 h. After workup and purification (10% EtOAc/hexanes, $R_f = 0.32$), compound epi-9ea was given as a colorless oil (9 mg, 12% yield). Minor diastereomer. ¹H NMR (500 MHz, CDCl₃) δ = 7.84–7.78 (m, 4 H), 7.70 (s, 1 H), 7.52-7.39 (m, 5 H), 7.25-7.21 (m, 2 H), 6.91-6.87 (m, 3 H), 3.80 (s, 3 H), 3.48 (tt, J = 3.7, 12.5 Hz, 1 H), 2.92 (ddd, J = 3.7, 12.5 Hz, J = 3.7, J = 3.7J = 6.4, 13.1, 15.6 Hz, 1 H), 2.65 (ddd, J = 2.7, 5.2, 15.6 Hz, 1 H), 2.56 (t, J = 13.1 Hz, 1 H), 2.42-2.33 (m, 1 H), 2.27-2.14 (m, 2 H), 1.76(s, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ = 213.6, 158.1, 142.2, 136.4, 133.5, 132.3, 128.2, 128.2, 127.6, 127.6, 126.1, 125.6, 125.5, 124.8, 113.5, 55.2, 52.9, 48.6, 39.0, 38.4, 33.3, 24.4. IR: 2970 (w), 2932 (w), 1707 (s), 1512 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for C₂₄H₂₄O₂ 344.1776; Found 344.1774.

(2R,4R)/(2S,4S)-2-(4-Methoxyphenyl)-2-methyl-4-(thiophen-2-yl)-cyclohexan-1-one (9fa). Prepared according to the general procedure using 7fa (74 mg, 0.21 mmol) and NaCl (37 mg, 0.63 mmol) in DMF (0.84 mL) and $\rm H_2O$ (3 drops) heated to reflux for 18 h. After workup

and purification (10% EtOAc/hexanes, $R_{\rm f}=0.41$), compound **9fa** was given as a colorless oil (41 mg, 65% yield). Major diastereomer. $^{\rm l}$ H NMR (500 MHz, CDCl₃) $\delta=7.18$ (dd, J=1.2, 5.2 Hz, 1 H), 7.16–7.13 (m, 2 H), 6.97 (dd, J=3.5, 5.0 Hz, 1 H), 6.94–6.91 (m, 2 H), 6.88 (td, J=1.0, 3.4 Hz, 1 H), 3.82 (s, 3 H), 3.51 (tt, J=3.2, 12.3 Hz, 1 H), 2.95 (td, J=3.2, 14.3 Hz, 1 H), 2.61 (dt, J=6.1, 14.0 Hz, 1 H), 2.41–2.36 (m, 1 H), 2.30–2.24 (m, 1 H), 2.04–1.89 (m, 2 H), 1.28 (s, 3 H). 13 C NMR (126 MHz, CDCl₃) $\delta=212.9$, 158.3, 134.7, 126.8 (2), 126.7, 123.0, 122.6, 114.6, 55.3, 53.2, 46.0, 39.0, 36.4, 34.5, 28.5. IR: 2961 (w), 2926 (w), 2859 (w), 1707 (s), 1510 (s) cm $^{-1}$. HRMS (EI) m/z: [M] $^+$ Calcd for $C_{18}H_{20}O_2S$ 300.1184; Found 300.1172.

(25,4R)/(2R,4S)-2-(4-Methoxyphenyl)-2-methyl-4-(thiophen-2-yl)-cyclohexan-1-one (epi-9fa). Prepared according to the general procedure using 7fa (74 mg, 0.21 mmol) and NaCl (37 mg, 0.63 mmol) in DMF (0.84 mL) and H_2O (3 drops) heated to reflux for 18 h. After workup and purification (10% EtOAc/Hexanes, $R_f = 0.21$), compound epi-9fa was given as a colorless oil (7 mg, 11% yield). Minor diastereomer. ¹H NMR (500 MHz, CDCl₃) $\delta = 7.22-7.18$ (m, 2 H), 7.16 (dd, J = 1.2, 4.9 Hz, 1 H), 6.95 (dd, J = 3.4, 5.2 Hz, 1 H), 6.90–6.86 (m, 3 H), 3.81–3.79 (m, 3 H), 3.62 (tt, J = 3.6, 12.1 Hz, 1 H), 2.87 (ddd, J = 6.3, 13.2, 15.6 Hz, 1 H), 2.59 (ddd, J = 2.9, 5.0, 15.6 Hz, 1 H), 2.49–2.41 (m, 2 H), 2.31 (td, J = 3.4, 13.7 Hz, 1 H), 2.12–2.03 (m, 1 H), 1.70 (s, 3 H). ¹³C NMR (126 MHz, CDCl₃) $\delta = 213.1$, 158.2, 148.7, 136.0, 128.1, 126.7, 123.0, 122.7, 113.5, 55.2, 52.8, 49.3, 38.0, 34.5, 34.3, 24.2. IR: 2926 (w), 1707 (s), 1512 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for $C_{18}H_{20}O_2S$ 300.1184; Found 300.1184.

(2R,4R)/(2S,4S)-4-((tert-Butyldiphenylsilyl)methyl)-2-(4-methoxyphenyl)-2-methylcyclohexan-1-one (9ga). Prepared according to the general procedure using 7ga (109 mg, 0.21 mmol) and NaCl (36 mg, 0.62 mmol) in DMF (0.83 mL) and H₂O (3 drops) heated to reflux for 4 h. After workup and purification (10% EtOAc/hexanes, R_f = 0.44), compound 9ga was given as a colorless oil (66 mg, 68% yield). (Diastereomeric ratio = 11.2:1). Only major diastereomer isolated. ¹H NMR (500MHx, CDCl₃) $\delta = 7.75 - 7.71$ (m, 2 H), 7.71 - 7.68 (m, 2 H), 7.47-7.37 (m, 6 H), 6.63-6.59 (m, 2 H), 6.57-6.53 (m, 2 H), 3.74 (s, 3 H), 2.36 (d, J = 14.3 Hz, 1 H), 2.20-2.12 (m, 1 H), 2.10-2.01 (m, 2 H), 1.79 - 1.72 (m, 1 H), 1.42 (dd, J = 12.4, 14.5 Hz, 2 H),1.22 (dd, J = 2.7, 6.4 Hz, 2 H), 1.03 (s, 3 H), 1.02–0.99 (m, 9 H). ¹³C NMR (126 MHz, CDCl₃) δ = 214.3, 157.8, 152.4, 136.1, 136.1, 136.1, 136.0, 135.1, 134.6, 134.4, 129.2, 129.2, 127.7, 127.6, 126.8, 114.0, 60.4, 55.1, 52.9, 47.9, 39.1, 38.4, 32.5, 29.1, 28.5, 27.7, 21.0, 18.2, 17.2, 15.8, 14.2. IR: 2961 (w), 2928 (w), 2857 (w), 1705 (s), 1510 (s) cm⁻ HRMS (EI) m/z: [M]⁺ Calcd for C₃₁H₃₈O₂Si 470.2641; Found 470.2646.

(2R,4R)/(2S,4S)-2-(3,4-Dimethoxyphenyl)-4-(4-methoxyphenyl)-2-methylcyclohexan-1-one (9ab). Prepared according to the general procedure using 7ab (125 mg, 0.30 mmol) and NaCl (53 mg, 0.91 mmol) in DMF (1.2 mL) and H₂O (3 drops) heated to reflux for 3.5 h. After workup and purification (20% EtOAc/hexanes, $R_f = 0.38$), compound 9ab was given as a colorless oil (77 mg, 72% yield). Major diastereomer. ¹H NMR (500 MHz, CDCl₃) $\delta = 7.19 - 7.15$ (m, 2 H), 6.91-6.86 (m, 3 H), 6.82 (dd, J = 2.1, 8.2 Hz, 1 H), 6.70 (d, J = 2.1Hz, 1 H), 3.89 (s, 3 H), 3.87 (s, 3 H), 3.80 (s, 3 H), 3.22 (tt, J = 3.2, 12.5 Hz, 1 H), 2.73 (td, J = 3.2, 14.4 Hz, 1 H), 2.61 (dt, J = 6.1, 14.0 Hz, 1 H), 2.39 (ddd, J = 2.4, 4.0, 13.7 Hz, 1 H), 2.11–2.05 (m, J = 3.4Hz, 1 H), 2.00-1.86 (m, 2 H), 1.28 (s, 3 H). ¹³C NMR (126 MHz, $CDCl_3$) $\delta = 213.5$, 158.2, 149.4, 147.8, 136.8, 135.5, 127.5, 117.9, 114.0, 111.6, 109.2, 55.9, 55.9, 55.3, 53.6, 45.7, 39.4, 38.4, 35.5, 28.5. IR: 2963 (w), 2930 (w), 2909 (w), 1705 (s), 1512 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for C₂₂H₂₆O₄ 354.1831; Found 354.1827.

(25,4R)/(2R,4S)-2-(3,4-Dimethoxyphenyl)-4-(4-methoxyphenyl)-2-methylcyclohexan-1-one (epi-9ab). Prepared according to the general procedure using 7ab (125 mg, 0.30 mmol) and NaCl (53 mg, 0.91 mmol) in DMF (1.2 mL) and $\rm H_2O$ (3 drops) heated to reflux for 3.5 h. After workup and purification (20% EtOAc/hexanes, $\rm R_f = 0.23$), compound epi-9ab was given as a colorless oil (14 mg, 13% yield). Minor diastereomer. $^1\rm H$ NMR (500 MHz, CDCl₃) $\delta = 7.22-7.18$ (m, 2 H), 6.89–6.85 (m, 2 H), 6.83 (d, $\rm J = 1.5$ Hz, 2 H), 6.79–6.77 (m, 1 H), 3.88–3.85 (m, 6 H), 3.80 (s, 3 H), 3.26 (tt, $\rm J = 3.7, 12.4$ Hz, 1 H), 2.85 (ddd, $\rm J = 6.4, 12.6, 15.5$ Hz, 1 H), 2.63–2.57 (m, 1 H), 2.42 (t, $\rm J$

= 13.1 Hz, 1 H), 2.29–2.22 (m, 1 H), 2.14 (dt, J = 3.4, 13.7 Hz, 1 H), 2.06 (dq, J = 5.5, 12.8 Hz, 1 H), 1.70 (s, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ = 213.7, 158.2, 148.4, 147.8, 136.9, 136.8, 127.6, 119.0, 114.0, 111.1, 110.7, 56.0, 55.8, 55.3, 53.1, 48.7, 38.3, 38.0, 33.3, 24.6. IR: 2931 (w), 2835 (w), 1703 (s), 1512 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for $C_{22}H_{26}O_4$ 354.1831; Found 354.1824.

(2R,4R)/(2S,4S)-2-(2,4-Dimethoxyphenyl)-4-(4-methoxyphenyl)-2-methylcyclohexan-1-one (9ac). Prepared according to the general procedure using 7ac (47 mg, 0.11 mmol) and NaCl (20 mg, 0.34 mmol) in DMF (0.56 mL) and H₂O (3 drops) heated to reflux for 2 h. After workup and purification (10% EtOAc/hexanes, $R_{\rm f}=0.28$), compound 9ac was given as a colorless oil (30 mg, 74% yield). Major diastereomer. ¹H NMR (500 MHz, CDCl₃) $\delta=7.19-7.16$ (m, 3 H), 6.86–6.82 (m, 2 H), 6.50–6.46 (m, 2 H), 3.80 (s, 3 H), 3.79 (s, 3 H), 3.78 (s, 3 H), 3.16–3.09 (m, 1 H), 2.73–2.68 (m, 2 H), 2.42 (t, J=13.3 Hz, 1 H), 2.18–2.12 (m, 2 H), 1.83–1.78 (m, 1 H), 1.61 (s, 3 H). ¹³C NMR (126 MHz, CDCl₃) $\delta=213.2$, 159.7, 158.0, 156.4, 137.6, 128.2, 127.5, 126.5, 113.8, 104.0, 100.0, 55.3, 55.3, 55.2, 50.2, 47.3, 38.7, 38.5, 32.2, 23.6. IR: 2938 (w), 2835 (w), 1701 (s), 1611 (m), 1512 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for C₂₂H₂₆O₄ 354.1831; Found 354.1829.

(2S,4R)/(2R,4S)-2-(2,4-Dimethoxyphenyl)-4-(4-methoxyphenyl)-2-methylcyclohexan-1-one (epi-9ac). Prepared according to the general procedure using 7ac (47 mg, 0.11 mmol) and NaCl (20 mg, 0.34 mmol) in DMF (0.56 mL) and H₂O (3 drops) heated to reflux for 2 h. After workup and purification (10% EtOAc/hexanes, $R_{\rm f}$ = 0.42), compound epi-9ac was given as a colorless oil (6 mg, 15% yield). Minor diastereomer. ¹H NMR (500 MHz, CDCl₃) $\delta = 7.31$ (d, J = 8.5 Hz, 1 H), 7.16 - 7.12 (m, 2 H), 6.88 - 6.83 (m, 2 H), 6.59 (dd, J= 2.4, 8.5 Hz, 1 H), 6.48 (d, J = 2.4 Hz, 1 H), 3.84 (s, 3 H), 3.79 (s, 3 H), 3.72 (s, 3 H), 3.17 (tt, J = 3.6, 12.6 Hz, 1 H), 2.71 (td, J = 3.2, 14.3Hz, 1 H), 2.65-2.57 (m, 1 H), 2.29-2.24 (m, 1 H), 2.10-2.03 (m, 1 H), 1.93-1.81 (m, 2 H), 1.24-1.21 (m, 3 H). 13C NMR (126 MHz, $CDCl_3$) $\delta = 214.8$, 159.7, 158.2, 157.7, 136.7, 127.6, 127.1, 125.1, 114.0, 113.9, 105.0, 99.3, 55.4, 55.3, 55.1, 51.7, 47.6, 38.7, 38.4, 37.2, 25.3. IR: 2932 (w), 2859 (w), 1713 (s), 1611 (m), 1512 (s) cm⁻¹ HRMS (EI) m/z: [M]⁺ Calcd for $C_{22}H_{26}O_4$ 354.1831; Found 354.1838.

(2R,4R)/(2S,4S)-2-(4-(Diphenylamino)phenyl)-4-(4-methoxyphenyl)-2-methylcyclohexan-1-one (9ad). Prepared according to the general procedure using 7ad (139 mg, 0.27 mmol) and NaCl (47 mg, 0.81 mmol) in DMF (1.07 mL) and H₂O (3 drops) heated to reflux for 18 h. After workup and purification (10% EtOAc/hexanes, R_f = 0.40), compound 9ad was given as a colorless oil (48 mg, 39% yield). Major diastereomer. 1 H NMR (500 MHz, CDCl₃) δ = 7.30– 7.25 (m, 4 H), 7.20-7.16 (m, 2 H), 7.14-7.10 (m, 4 H), 7.08 (s, 4 H), 7.06-7.02 (m, 2 H), 6.90-6.86 (m, 2 H), 3.80 (s, 3 H), 3.22 (tt, I =3.1, 12.6 Hz, 1 H), 2.74 (td, J = 3.2, 14.4 Hz, 1 H), 2.67 (dt, J = 6.0, 14.0 Hz, 1 H), 2.43-2.37 (m, 1 H), 2.16-2.09 (m, J = 3.4 Hz, 1 H), 1.99–1.92 (m, 2 H), 1.29 (s, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ = 213.5, 158.2, 147.6, 146.4, 136.8, 136.6, 129.3, 127.5, 126.6, 124.5, 123.7, 123.0, 114.0, 55.3, 53.5, 45.7, 39.5, 38.3, 35.5, 28.6. IR: 2963 (w), 2928 (w), 1707 (s), 1589 (s), 1510 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for C₃₂H₃₁O₂N 461.2355; Found 461.2357.

(2S,4R)/(2R,4S)-2-(4-(Diphenylamino)phenyl)-4-(4-methoxyphenyl)-2-methylcyclohexan-1-one (epi-9ad). Prepared according to the general procedure using 7ad (139 mg, 0.27 mmol) and NaCl (47 mg, 0.81 mmol) in DMF (1.07 mL) and H₂O (3 drops) heated to reflux for 18 h. After workup and purification (10% EtOAc/hexanes, R_f = 0.20), compound epi-9ad was given as a colorless oil (24 mg, 19% yield). Minor diastereomer. ¹H NMR (500 MHz, CDCl₃) $\delta = 7.26$ – 7.19 (m, 6 H), 7.15-7.12 (m, 2 H), 7.11-7.08 (m, 4 H), 7.05-6.98 (m, 4 H), 6.89-6.86 (m, 2 H), 3.80 (s, 3 H), 3.27 (tt, <math>J = 3.6, 12.4 Hz1 H), 2.87 (ddd, *J* = 6.4, 12.9, 15.5 Hz, 1 H), 2.64–2.58 (m, 1 H), 2.40 (t, J = 13.1 Hz, 1 H), 2.29-2.22 (m, 1 H), 2.13 (td, J = 3.2, 13.7 Hz, 1 Hz)H), 2.11–2.01 (m, 1 H), 1.71 (s, 3 H). ¹³C NMR (126 MHz, CDCl₂) δ = 213.6, 158.2, 147.7, 146.0, 138.4, 136.9, 129.1, 127.8, 127.6, 124.2, 123.3, 122.6, 113.9, 55.3, 53.1, 49.1, 38.4, 38.1, 33.4, 24.3. IR: 2932 (w), 1705 (s), 1587 (s), 1510 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for C₃₂H₃₁O₂N 461.2355; Found 461.2357.

(2R,4R)/(2S,4S)-2-(4-Methoxynaphthalen-1-yl)-4-(4-methoxyphenyl)-2-methylcyclohexan-1-one (9ae). Prepared according to the general procedure using cyclohexenol 7ae (113 mg, 0.26 mmol) and NaCl (45 mg, 0.76 mmol) in DMF (1.0 mL) and H₂O (3 drops) heated to reflux for 18 h. After workup and purification (15% EtOAc/ hexanes, $R_f = 0.42$), compound 9ae was given as a colorless oil (43 mg, 44% yield). Major diastereomer. 1 H NMR (500 MHz, CDCl₃) δ = 8.43-8.37 (m, 1 H), 7.96-7.91 (m, 1 H), 7.70 (d, J = 8.2 Hz, 1 H), 7.53-7.48 (m, 2 H), 7.28-7.24 (m, 2 H), 6.97-6.91 (m, 3 H), 4.09 (s, 3 H), 3.85 (s, 3 H), 3.55 (tt, J = 3.7, 12.7 Hz, 1 H), 3.02 (td, J = 3.2, 12.7 Hz, 1 H)14.6 Hz, 1 H), 2.43 (ddd, J = 5.5, 11.4, 13.9 Hz, 1 H), 2.32-2.27 (m, 1 H), 2.15-1.94 (m, 3 H), 1.57 (s, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ = 218.7, 154.8, 136.2, 132.6, 130.4, 127.7, 127.1, 126.6, 124.9, 124.2, 123.5, 123.0, 114.0, 103.1, 55.5, 55.3, 54.9, 49.4, 39.9, 38.0, 37.4, 26.3. IR: 2932 (w), 1703 (s), 1512 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for C₂₅H₂₆O₃ 374.1882; Found 374.1878.

(2S,4R)/(2R,4S)-2-(4-Methoxynaphthalen-1-yl)-4-(4-methoxyphenyl)-2-methylcyclohexan-1-one (epi-9ae). Prepared according to the general procedure using cyclohexenol 7ae (113 mg, 0.26 mmol) and NaCl (45 mg, 0.76 mmol) in DMF (1.0 mL) and H₂O (3 drops) heated to reflux for 18 h. After workup and purification (15% EtOAc/ hexanes, $R_f = 0.12$), compound epi-9ae was given as a colorless oil (34 mg, 34% yield). Minor diastereomer. 1 H NMR (500 MHz, CDCl₃) δ = 8.38 (td, J = 0.8, 8.2 Hz, 1 H), 7.56-7.49 (m, 2 H), 7.49-7.42 (m, 2 H), 7.22-7.16 (m, 2 H), 6.86-6.81 (m, 2 H), 6.78 (d, J = 8.2 Hz, 1 H), 3.99 (s, 3 H), 3.77 (s, 3 H), 3.40 (tt, J = 3.5, 12.6 Hz, 1 H), 3.05(ddd, I = 6.7, 13.8, 17.3 Hz, 1 H), 2.91-2.84 (m, 1 H), 2.78 (t, I =13.6 Hz, 1 H), 2.50-2.32 (m, 2 H), 2.01 (dt, J = 3.4, 13.9 Hz, 1 H), 1.91 (s, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ = 213.5, 158.1, 154.9, 136.8, 133.4, 130.4, 127.6, 126.9, 125.8, 125.7, 124.3, 124.2, 123.3, 113.9, 102.9, 55.4, 55.2, 52.8, 48.0, 38.6, 38.5, 32.7, 25.7. IR: 2938 (w), 2911 (w), 1703 (s), 1512 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for C₂₅H₂₆O₃ 374.1882; Found 374.1875.

(2R,4R)/(2S,4S)-2-(Furan-2-yl)-4-(4-methoxyphenyl)-2-methylcy-clohexan-1-one (12aa). Prepared according to the general procedure using 11aa (74 mg, 0.18 mmol) and NaCl (27 mg, 0.46 mmol) in DMF (0.61 mL) and H₂O (3 drops) heated to reflux for 2 d. After workup and purification (20% EtOAc/hexanes, $R_{\rm f}$ = 0.32), compound 12aa was given as a colorless oil (10 mg, 16% yield). Major diastereomer. ¹H NMR (500 MHz, CDCl₃) δ = 7.39 (dd, J = 0.6, 1.8 Hz, 1 H), 7.19–7.14 (m, 2 H), 6.90–6.84 (m, 2 H), 6.38 (dd, J = 1.8, 3.4 Hz, 1 H), 6.16 (dd, J = 0.8, 3.2 Hz, 1 H), 3.80 (s, 3 H), 3.27 (tt, J = 3.5, 12.6 Hz, 1 H), 2.72–2.63 (m, 2 H), 2.48–2.42 (m, 1 H), 2.17–2.09 (m, 1 H), 1.96–1.85 (m, 2 H), 1.34 (s, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ = 210.0, 158.2, 156.8, 141.8, 136.6, 127.6, 114.0, 110.5, 105.4, 55.3, 50.6, 46.4, 39.4, 38.7, 34.8, 24.7. IR: 2928 (w), 1712 (s), 1512 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for C₁₈H₂₀O₃ 284.1412; Found 284.1405.

(25,4R)/(2R,4S)-2-(Furan-2-yl)-4-(4-methoxyphenyl)-2-methylcy-clohexan-1-one (epi-12aa). Prepared according to the general procedure using 11aa (74 mg, 0.18 mmol) and NaCl (27 mg, 0.46 mmol) in DMF (0.61 mL) and H₂O (3 drops) heated to reflux for 2 d. After workup and purification (20% EtOAc/hexanes, $R_f = 0.32$), compound epi-12aa was given as a colorless oil (10 mg, 16% yield). Minor diastereomer. ¹H NMR (500 MHz, CDCl₃) δ = 7.39 (dd, J = 0.6, 1.8 Hz, 1 H), 7.23–7.18 (m, 2 H), 6.90–6.84 (m, 2 H), 6.33 (dd, J = 1.8, 3.1 Hz, 1 H), 6.19 (dd, J = 0.9, 3.4 Hz, 1 H), 3.80 (s, 3 H), 3.27 (tt, J = 3.5, 12.7 Hz, 1 H), 2.81 (ddd, J = 6.1, 13.7, 15.3 Hz, 1 H), 2.60–2.51 (m, 2 H), 2.26–2.18 (m, 1 H), 2.10–1.98 (m, 2 H), 1.69 (s, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ = 210.9, 158.3, 157.2, 141.7, 127.7, 114.0, 109.9, 106.0, 55.3, 50.8, 45.2, 38.2, 37.6, 33.8, 22.1. IR: 2932 (w), 1709 (s), 1512 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for C₁₈H₂₀O₃ 284.1412; Found 284.1404.

(25,4R)/(2R,4S)-4-(4-Methoxyphenyl)-2-methyl-2-(thiophen-2-yl)-cyclohexan-1-one (12ab). Prepared according to the general procedure using cyclohexenol 11ab (76 mg, 0.21 mmol) and NaCl (37 mg, 0.64 mmol) in DMF (0.85 mL) and $\rm H_2O$ (3 drops) heated to reflux for 1.5 h. After workup and purification, (10% EtOAc/hexanes, $\rm R_f = 0.32$), cyclohexanone 12ab was given as a colorless oil (33 mg, 52% yield). (Diastereomeric ratio = 4.3:1). ¹H NMR (300 MHz,

CDCl₃) δ = 7.35 (dd, J = 2.9, 5.0 Hz, 0.37 H), 7.29–7.25 (m, 1 H), 7.22–7.15 (m, 2.37 H), 7.05 (dd, J = 1.5, 2.9 Hz, 0.25 H), 6.99 (dd, J = 3.5, 5.1 Hz, 1 H), 6.94 (dd, J = 1.5, 5.0 Hz, 0.31 H), 6.91–6.85 (m, 2.24 H), 6.77 (dd, J = 1.2, 3.5 Hz, 1 H), 3.81 (s, 3.56 H), 3.35 (tt, J = 3.4, 12.5 Hz, 1 H), 3.23 (tt, J = 3.2, 12.6 Hz, 0.24 H), 2.79 (dt, J = 6.2, 14.2 Hz, 1 H), 2.66 (td, J = 3.3, 14.2 Hz, 1.31 H), 2.51–2.41 (m, 1.13 H), 2.17–1.85 (m, 3.76 H), 1.40 (s, 3 H), 1.30 (s, 0.73 H). 13 C NMR (75 MHz, CDCl₃) δ = 210.9, 158.2, 148.7, 136.5, 127.6, 127.2, 124.1, 124.0, 114.0, 55.3, 51.9, 48.7, 38.9, 38.6, 34.4, 29.2. IR: 2926 (w), 1709 (s), 1611 (w), 1512 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for $C_{18}H_{20}O_2S$ 300.1184; Found 300.1175.

(25,4R)/(2R,4S)-4-(4-Methoxyphenyl)-2-(5-methoxythiophen-2-yl)-2-methylcyclohexan-1-one (12ac). Prepared according to the general procedure using 11ac (66 mg, 0.17 mmol) and NaCl (30 mg, 0.51 mmol) in DMF (0.68 mL) and H₂O (3 drops) heated to reflux for 21 h. After workup and purification by prepTLC (15% EtOAc/hexanes, $R_f = 0.40$), compound 12ac was given as a yellow oil (21 mg, 37% yield). Major diastereomer. ¹H NMR (500 MHz, CDCl₃) δ = 7.20–7.15 (m, 2 H), 6.89–6.85 (m, 2 H), 6.36 (d, J = 3.7 Hz, 1 H), 6.04 (d, J = 3.7 Hz, 1 H), 3.88 (s, 3 H), 3.80 (s, 3 H), 3.36 (tt, J = 3.2, 12.6 Hz, 1 H), 2.85 (dt, J = 6.1, 14.2 Hz, 1 H), 2.50 (td, J = 3.3, 14.2 Hz, 1 H), 2.46–2.41 (m, 1 H), 2.15–2.07 (m, 1 H), 2.00–1.86 (m, 2 H), 1.36 (s, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ = 210.9, 165.1, 158.2, 136.6, 134.4, 127.6, 121.3, 114.0, 103.3, 60.2, 55.3, 51.8, 48.3, 38.8, 38.5, 34.4, 28.8. IR: 2959 (w), 2926 (w), 1705 (s), 1512 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for C₁₉H₂₂O₃S 330.1290; Found 330.1286.

(2R,4R)/(2S,4S)-4-(4-Methoxyphenyl)-2-(5-methoxythiophen-2yl)-2-methylcyclohexan-1-one (epi-12ac). Prepared according to the general procedure using 11ac (66 mg, 0.17 mmol) and NaCl (30 mg, 0.51 mmol) in DMF (0.68 mL) and H₂O (3 drops) heated to reflux for 21 h. After workup and purification by prepTLC (15% EtOAc/ hexanes, $R_f = 0.23$), compound epi-12ac was given as a brown oil (18 mg, 33% yield). Minor diastereomer. ¹H NMR (500 MHz, CDCl₃) δ = 7.22-7.17 (m, 2 H), 6.90-6.86 (m, 2 H), 6.51 (d, J = 4.0 Hz, 1 H), 6.04 (d, J = 4.0 Hz, 1 H), 3.86 (s, 3 H), 3.82-3.79 (m, 3 H), 3.26 (tt, J= 3.5, 12.5 Hz, 1 H), 2.82 (ddd, J = 6.4, 13.4, 15.3 Hz, 1 H), 2.60-2.53(m, 1 H), 2.40-2.32 (m, 1 H), 2.28-2.17 (m, 2 H), 1.99 (dq, <math>J = 5.0, 13.1 Hz, 1 H), 1.70 (s, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ = 211.5, 165.5, 158.3, 136.5, 134.0, 127.7, 121.0, 114.0, 102.6, 60.1, 55.3, 51.4, 48.5, 38.1, 38.0, 33.6, 26.0. IR: 2934 (w), 1707 (s), 1512 (s) cm⁻¹ HRMS (EI) m/z: [M]⁺ Calcd for C₁₉H₂₂O₃S 330.1290; Found 330,1291.

(2R,4R)/(2S,4S)-2-(2,5-Dimethylfuran-3-yl)-4-(4-methoxyphenyl)-2-methylcyclohexan-1-one (12ad). Prepared according to the general procedure using cyclohexenol 11ad (107 mg, 0.29 mmol) and NaCl (51 mg, 0.87 mmol) in DMF (1.2 mL) and H₂O (3 drops) heated to reflux for 24 h. After workup and purification (10% EtOAc/hexanes, R_f = 0.35), cyclohexanone 12ad was given as a colorless oil (38 mg, 42% yield). Only major diastereomer isolated. ¹H NMR (500 MHz, $CDCl_3$) $\delta = 7.18-7.14$ (m, 2 H), 6.89-6.85 (m, 2 H), 5.91 (d, J = 0.6Hz, 1 H), 3.80 (s, 3 H), 3.22 (tt, J = 3.4, 12.5 Hz, 1 H), 2.75 (ddd, J =6.1, 13.1, 14.0 Hz, 1 H), 2.48 (td, J = 3.2, 14.0 Hz, 1 H), 2.39–2.33 (m, 1 H), 2.26 (s, 3 H), 2.15–2.08 (m, 1 H), 2.07 (s, 3 H), 1.95–1.79 (m, 2 H), 1.21 (s, 3 H). 13 C NMR (126 MHz, CDCl₃) δ = 213.5, 158.2, 149.6, 145.0, 136.7, 127.6, 122.0, 114.0, 105.2, 55.2, 48.3, 47.8, 39.0, 38.7, 35.8, 25.4, 13.5, 12.3. IR: 2963 (w), 2955 (w), 2928 (w), 1707 (s), 1512 (s) cm⁻¹. HRMS (EI): m/z: [M]+ Calcd for $C_{20}H_{24}O_3$ 312,1725: Found 312,1719.

(2R,4R)/(2S,4S)-2-(2,5-Dimethylthiophen-3-yl)-4-(4-methoxyphenyl)-2-methylcyclohexan-1-one (12ae). Prepared according to the general procedure using cyclohexenol 11ae (129 mg, 0.33 mmol) and NaCl (59 mg, 1.01 mmol) in DMF (1.3 mL) and H₂O (3 drops) heated to reflux for 18 h. After workup and purification (10% EtOAc/hexanes, $R_{\rm f}$ = 0.33), cyclohexanone 12ae was given as a pale yellow oil (59 mg, 53% yield). Major diastereomer. 1 H NMR (500 MHz, CDCl₃) δ = 7.19–7.14 (m, 2 H), 6.90–6.85 (m, 2 H), 6.66 (d, J = 0.9 Hz, 1 H), 3.80 (s, 3 H), 3.26 (tt, J = 3.4, 12.5 Hz, 1 H), 2.76 (ddd, J = 6.0, 12.4, 14.0 Hz, 1 H), 2.67 (td, J = 3.3, 14.1 Hz, 1 H), 2.44 (s, 3 H), 2.41–2.34 (m, 1 H), 2.17–2.08 (m, 4 H), 1.95–1.83 (m, 2 H), 1.24

(s, 3 H). 13 C NMR (126 MHz, CDCl₃) δ = 214.5, 158.2, 138.0, 136.5, 135.7, 131.5, 127.6, 124.8, 114.0, 55.2, 52.2, 48.8, 39.4, 38.7, 36.6, 24.8, 15.2, 13.7. IR: 2961 (w), 2926 (w), 2859 (w), 1707 (s), 1512 (s) cm $^{-1}$. HRMS (EI) m/z: [M] $^+$ Calcd for $\rm C_{20}H_{24}O_2S$ 328.1497; Found 328.1493.

(25,4R)/(2R,4S)-2-(2,5-Dimethylthiophen-3-yl)-4-(4-methoxyphenyl)-2-methylcyclohexan-1-one (epi-12ae). Prepared according to the general procedure using cyclohexenol 11ae (129 mg, 0.33 mmol) and NaCl (59 mg, 1.01 mmol) in DMF (1.3 mL) and H₂O (3 drops) heated to reflux for 18 h. After workup and purification (10% EtOAc/hexanes, $R_f = 0.15$), cyclohexanone epi-12ae was given as a pale yellow oil (20 mg, 18% yield). Minor diastereomer. ¹H NMR (500 MHz, CDCl₃) δ = 7.20–7.16 (m, 2 H), 6.88–6.84 (m, 2 H), 6.56 (d, J = 0.9 Hz, 1 H), 3.79 (s, 3 H), 3.21 (tt, J = 3.5, 12.5 Hz, 1 H), 2.85 (ddd, J = 6.4, 13.7, 16.3 Hz, 1 H), 2.66–2.59 (m, 1 H), 2.37 (s, 3 H), 2.32–2.19 (m, 5 H), 2.12–1.99 (m, 2 H), 1.71 (s, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ = 212.1, 158.2, 140.1, 136.7, 134.6, 131.3, 127.5, 125.5, 113.9, 55.3, 51.2, 48.2, 38.3, 37.9, 33.1, 25.4, 15.8, 15.1. IR: 2932 (w), 2924 (w), 2860 (w), 1705 (s), 1512 (s) cm⁻¹. HRMS (EI) m/z: [M]+ Calcd for C₂₀H₂₄O₂S 328.1497; Found 328.1492.

(2R,4R)/(2S,4S)-2-(Benzo[b]thiophen-3-yl)-4-(4-methoxyphenyl)-2-methylcyclohexan-1-one (12af). Prepared according to the general procedure using 11af (74 mg, 0.18 mmol) and NaCl (32 mg, 0.55 mmol) in DMF (0.74 mL) and H₂O (3 drops) heated to reflux for 18 h. After workup and purification (20% EtOAc/hexanes, $R_f = 0.68$), compound 12af was given as a colorless oil (29 mg, 46% yield). Major diastereomer. ¹H NMR (500 MHz, CDCl₃) $\delta = 7.90-7.87$ (m, 1 H), 7.73-7.70 (m, 1 H), 7.48 (s, 1 H), 7.37-7.31 (m, 2 H), 7.24-7.20 (m, 2 H), 6.92-6.88 (m, 2 H), 3.82 (s, 3 H), 3.58 (tt, J = 3.5, 12.6 Hz,1 H), 2.90 (td, J = 3.4, 14.5 Hz, 1 H), 2.51–2.43 (m, 1 H), 2.38–2.32 (m, 1 H), 2.17–2.04 (m, 2 H), 2.01–1.90 (m, 1 H), 1.46 (s, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ = 214.5, 158.3, 141.0, 137.2, 137.1, 136.2, 127.6, 124.4, 124.4, 123.0, 122.7, 122.1, 114.1, 55.3, 52.5, 48.3, 39.9, 38.3, 36.4, 25.2. IR: 2968 (w), 2930 (w), 1707 (s), 1512 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for $C_{22}H_{22}O_2S$ 350.1341; Found 350.1333.

(2S,4R)/(2R,4S)-2-(Benzo[b]thiophen-3-yl)-4-(4-methoxyphenyl)-2-methylcyclohexan-1-one (epi-12af). Prepared according to the general procedure using 11ae (74 mg, 0.18 mmol) and NaCl (32 mg, 0.55 mmol) in DMF (0.74 mL) and H₂O (3 drops) heated to reflux for 18 h. After workup and purification (20% EtOAc/hexanes, R_f = 0.32), compound epi-12af was given as a colorless oil (10 mg, 16% yield). Minor diastereomer. ¹H NMR (500 MHz, CDCl₃) δ = 7.87– 7.84 (m, 1 H), 7.46 (td, I = 0.9, 8.2 Hz, 1 H), 7.38–7.30 (m, 2 H), 7.24 (s, 1 H), 7.21-7.16 (m, 2 H), 6.86-6.82 (m, 2 H), 3.79-3.76 (m, 3 H), 3.37 (tt, J = 3.6, 12.6 Hz, 1 H), 3.02 (ddd, J = 6.3, 14.0, 16.1Hz, 1 H), 2.77-2.71 (m, 1 H), 2.68 (t, J = 13.4 Hz, 1 H), 2.38-2.31 (m, 1 H), 2.30–2.19 (m, 1 H), 2.08–2.01 (m, 1 H), 1.89 (s, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ = 211.9, 158.2, 136.7, 136.4, 127.6, 123.8, 123.8, 123.6, 123.3, 122.3, 113.9, 55.3, 47.0, 38.6, 38.2, 36.6, 33.5, 24.7, 24.4. IR: 2932 (w), 1703 (s), 1512 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for C22H22O2S 350.1341; Found 350.1332.

(2R,4R)/(2S,4S)-4-(4-Methoxyphenyl)-2-methyl-2-(1-tosyl-1Hindol-3-yl)cyclohexan-1-one (12ag). Prepared according to the general procedure using 11ag (145 mg, 0.27 mmol) and NaCl (47 mg, 0.80 mmol) in DMF (1.1 mL) and H₂O (3 drops) heated to reflux for 18 h. After workup and purification (20% EtOAc/hexanes, R_f = 0.50), compound 12ag was given as a pale yellow oil (70 mg, 54% yield). Major diastereomer. ¹H NMR (500 MHz, CDCl₃) $\delta = 8.03$ – 8.00 (m, 1 H), 7.81-7.77 (m, 2 H), 7.58 (s, 1H), 7.42 (d, J = 7.9 Hz, 1H), 7.32 (dt, J = 1.2, 7.8 Hz, 1 H), 7.25 (dd, J = 0.8, 9.0 Hz, 2 H), 7.23-7.16 (m, 3 H), 6.94-6.90 (m, 2 H), 3.83 (s, 3 H), 3.42 (tt, J =3.4, 12.5 Hz, 1 H), 2.78 (td, J = 3.4, 14.0 Hz, 1 H), 2.47–2.39 (m, J =5.6, 13.6 Hz, 1 H), 2.37-2.30 (m, 4 H), 2.13-2.00 (m, 2 H), 1.92 (dq, I = 4.1, 13.2 Hz, 1 H), 1.38 (s, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ = 213.1, 158.4, 145.1, 136.1, 135.7, 135.0, 129.9, 128.8, 127.6, 126.8, 124.9, 124.6, 123.5, 122.9, 120.6, 114.1, 113.8, 55.3, 49.5, 47.2, 39.4, 38.5, 35.7, 25.6, 21.6. IR: 2930 (w), 1708 (s), 1512 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for $C_{29}H_{29}O_4NS$ 487.1817; Found 487.1811.

(2S,4R)/(2R,4S)-4-(4-Methoxyphenyl)-2-methyl-2-(1-tosyl-1Hindol-3-yl)cyclohexan-1-one (epi-12ag). Prepared according to the general procedure using 11ag (145 mg, 0.27 mmol) and NaCl (47 mg, 0.80 mmol) in DMF (1.1 mL) and H₂O (3 drops) heated to reflux for 18 h. After workup and purification (20% EtOAc/hexanes, $R_f = 0.17$), compound epi-12ag was given as a pale yellow oil (31 mg, 24% yield). Minor diastereomer. ¹H NMR (500 MHz, CDCl₃) $\delta = 7.98-7.94$ (m, 1 H), 7.77-7.72 (m, 2 H), 7.41 (s, 1H), 7.30-7.25 (m, 2 H), 7.24-7.16 (m, 5 H), 6.88-6.83 (m, 2 H), 3.78 (s, 3 H), 3.35 (tt, I = 3.4, 12.5)Hz, 1 H), 2.95 (ddd, J = 6.3, 14.0, 15.4 Hz, 1 H), 2.63 (ddd, J = 2.7, 4.6, 15.6 Hz, 1 H), 2.52 (t, J = 13.3 Hz, 1 H), 2.35-2.27 (m, 4 H), 2.17–2.03 (m, 2 H), 1.81 (s, 3 H). 13 C NMR (126 MHz, CDCl₃) $\delta =$ 211.3, 158.3, 144.8, 136.2, 135.7, 135.3, 129.9, 128.9, 127.6, 127.1, 126.8, 124.3, 122.7, 122.7, 121.6, 114.0, 113.8, 55.3, 49.3, 47.2, 38.3, 38.0, 33.9, 23.6, 21.5. IR: 2931 (w), 1707 (s), 1514 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for $C_{29}H_{29}O_4NS$ 487.1817; Found 487.1814.

Allylation of 11aa. Synthesis of Methyl 1-allyl-3-(furan-2-yl)-5-(4methoxyphenyl)-3-methyl-2-oxocyclohexane-1-carboxylate (13). Sodium hydride (33 mg as 60% dispersion in mineral oil, 0.83 mmol) was added to a flame-dried flask and cooled 0 °C. Cyclohexenol 11aa (200 mg, 0.58 mmol) was dissolved in THF (1.2 mL) and added to the flask and stirred for 1 h at 0 °C. Allyl bromide (0.10 mL, 1.20 mmol) was then added and the solution was warmed to room temperature and stirred overnight. The reaction mixture was quenched with sat. aq. NH₄Cl, extracted three times with EtOAc, dried over Na2SO4, and concentrated. The resulting crude mixture was purified by flash chromatography on silica gel ($R_f = 0.30$, 10% EtOAc/Hexanes) to give the desired compound as a colorless oil (118 mg, 53% yield). (Diastereomeric ratio = 7.1:3.6:3.1:1.0). ¹H NMR (500 MHz, CDCl₃) δ = 7.41 (dd, J = 0.6, 1.8 Hz, 0.14 H), 7.38 (dd, I = 0.9, 1.8 Hz, 1.00 H), 7.37 (dd, I = 0.9, 1.8 Hz, 0.42 H), 7.35(dd, J = 0.9, 1.8 Hz, 0.51 H), 7.29 (d, J = 8.9 Hz, 1.15 H), 7.27-7.24(m, 1.38 H), 7.24–7.20 (m, 2.26 H), 6.92–6.86 (m, 4.45 H), 6.39 (dd, I = 1.8, 3.4 Hz, 1.01 H), 6.33 (dd, I = 1.8, 3.4 Hz, 0.58 H), 6.31 (dd, I= 1.8, 3.1 Hz, 0.56 H), 6.29-6.27 (m, 0.43 H), 6.24 (dd, J = 0.9, 3.4 Hz, 1.02 H), 6.18 (dd, J = 0.8, 3.2 Hz, 0.66 H), 5.68–5.51 (m, 2.20 H), 5.09-4.93 (m, 4.50 H), 3.89-3.82 (m, 0.66 H), 3.82-3.80 (m, 6.14 H), 3.80 (s, 0.48 H), 3.76 (s, 3.09 H), 3.75 (s, 0.41 H), 3.54–3.47 (m, 0.15 H), 3.44 (s, 1.64 H), 3.43-3.35 (m, 1.09 H), 3.34 (s, 1.30 H), 2.97-2.75 (m, 2.91 H), 2.68-2.63 (m, 1.41 H), 2.63-2.57 (m, 1.86 H), 2.55–2.46 (m, 1.69 H), 2.39–2.33 (m, 0.49 H), 2.16 (td, J = 3.4, 13.9 Hz, 1.10 H), 2.12–1.93 (m, 3.92 H), 1.78–1.72 (m, 0.22 H), 1.60 (s, 0.35 H), 1.55 (s, 1.67 H), 1.43 (s, 1.44 H), 1.42 (s, 2.96 H). ¹³C NMR (126 MHz, CDCl₃) δ = 207.0, 206.8, 205.6, 204.1, 172.1, 171.7, 171.3, 170.2, 158.4, 158.3, 158.3, 157.3, 156.2, 156.0, 155.1, 142.2, 142.0, 141.8, 141.8, 137.1, 136.4, 136.2, 136.2, 133.1, 132.7, 132.6, 127.8, 127.8, 127.7, 127.6, 119.2, 119.1, 119.0, 119.0, 114.0, 114.0, 114.0, 114.0, 113.8, 110.7, 110.5, 110.3, 109.9, 107.1, 106.0, 106.0, 105.3, 61.7, 59.1, 58.9, 58.8, 55.3, 52.6, 52.4, 52.3, 52.0, 50.9, 49.7, 49.6, 45.0, 44.3, 44.2, 42.2, 41.6, 41.6, 41.2, 41.1, 40.6, 39.1, 38.5, 36.9, 34.9, 34.8, 34.2, 33.7, 29.7, 27.0, 26.1, 24.3, 22.2. IR: 2951 (w), 2932 (w), 1736 (m), 1711 (s), 1512 (s) cm⁻¹. HRMS (EI) m/z: [M]⁺ Calcd for C23H26O5 382.1780; Found 382.1777.

Procedure for Intramolecular [4 + 2] Cycloaddition. Compound 13 (59 mg, 0.15 mmol) was dissolved in xylenes (3.1 mL) and heated to reflux for 24 h. The reaction mixture was concentrated and purified by prep-TLC ($R_f = 0.04$, 10% EtOAc/ Hexanes) to give cycloadduct 14 (15 mg, 46% yield based on 32.4 mg of reacting syn-diastereomers of 13). Starting material 13 was also recovered (27 mg, 46% recovery). (Diasteromeric ratio = 5.3:1). ¹H NMR (500 MHz, CDCl₃) $\delta = 7.21-7.17$ (m, 2.14 H), 7.17-7.13 (m, 0.57 H), 6.89-6.85 (m, 2.13 H), 6.85-6.82 (m, 0.38 H), 6.45 (dd, I = 1.00 GeV1.5, 5.8 Hz, 0.98 H), 6.39 (d, J = 6.1 Hz, 0.99 H), 5.00 (dd, J = 1.7, 4.7Hz, 0.99 H), 4.27-4.25 (m, 0.18 H), 3.80 (s, 3.18 H), 3.78 (s, 0.60 H), 3.75 (s, 2.94 H), 3.74 (s, 0.53 H), 3.66 (tt, J = 5.1, 13.4 Hz, 1.19 H), 2.85-2.78 (m, 1.14 H), 2.78-2.73 (m, 0.18 H), 2.72-2.61 (m, 0.43 H), 2.53-2.38 (m, 4.50 H), 2.36-2.30 (m, 1.84 H), 2.06 (t, J = 14.0Hz, 1.31 H), 1.93–1.86 (m, 0.42 H), 1.75 (dd, J = 6.9, 11.4 Hz, 1.11 H), 1.63-1.56 (m, 1.70 H), 1.53-1.47 (m, 0.28 H), 1.40-1.35 (m, 0.23 H), 1.22 (s, 0.57 H), 1.11 (s, 3.00 H). ¹³C NMR (126 MHz,

CDCl₃) δ = 211.6, 210.9, 172.4, 172.3, 158.5, 158.4, 140.2, 138.0, 137.7, 135.8, 135.6, 133.0, 129.9, 128.3, 127.8, 127.8, 127.4, 126.8, 126.0, 114.1, 114.0, 99.9, 97.7, 94.7, 79.1, 78.5, 58.7, 58.3, 55.3, 55.3, 52.4, 52.3, 50.0, 49.2, 47.3, 47.1, 45.2, 43.8, 43.5, 41.3, 40.8, 40.7, 40.6, 39.8, 37.9, 37.3, 37.2, 36.7, 34.4, 21.4, 19.0, 17.0. IR: 2949 (w), 1734 (s), 1717 (s), 1610 (w), 1512 (s) cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for $C_{23}H_{26}O_5$ 383.1853; Found 383.1854.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b01312.

Optimization tables for the reaction of cyclopropane **5a** and anisole **(6a)**. ¹H and ¹³C NMR spectra for all new compounds. **(PDF)**

AUTHOR INFORMATION

Corresponding Author

*E-mail: stefan.france@chemistry.gatech.edu

Author Contributions

§These authors contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

S.F. gratefully acknowledges financial support from the National Science Foundation (CAREER Award CHE-1056687). R.S. thanks NOBCChE for an E. I. Dupont Graduate Fellowship.

■ REFERENCES

- (1) For representative examples, see: (a) Caesall I: Wu, L.; Wang, X.; Shan, S.; Luo, J.; Kong, L. Chem. Pharm. Bull. 2014, 62, 729. (b) walsucochinoid D: Han, M.-L.; Shen, Y.; Leng, Y.; Zhang, H.; Yue, J.-M. RSC Adv. 2014, 4, 19150. (c) Garnier, J.; Mahuteau, J.; Plat, M.; Merienne, C. Phytochemistry 1989, 28, 308. (d) 1-oxofurruginol: Topcu, G.; Goren, A. C. Rec. Nat. Prod. 2007, 1, 1.
- (2) For review articles on transition metal-catalyzed a-arylation of enolates, see: (a) Potukuchi, H. K.; Spork, A. P.; Donohoe, T. Org. Biomol. Chem. 2015, 13, 4367. (b) Mazet, C. Synlett 2012, 23, 1999. (c) Johansson, C. C. C.; Colacot, T. J. Angew. Chem., Int. Ed. 2010, 49, 676. (d) Bellina, F.; Rossi, R. Chem. Rev. 2010, 110, 1082. (e) Hartwig, J. F. Synlett 2006, 2006, 1283. (f) Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234.
- (3) For reviews discussing hypervalent iodine reagent in a-arylation reactions, see: (a) Dong, D.-Q.; Hao, S.-H.; Wang, Z.-L.; Chen, C. Org. Biomol. Chem. 2014, 12, 4278. (b) Merritt, E. A.; Olofsson, B. Synthesis 2011, 2011, 517. (c) Aggarwal, V. K.; Olofsson, B. Angew. Chem., Int. Ed. 2005, 44, 5516.
- (4) For reviews on oxyallyl cations and their reactivities, see: (a) Li, H.; Wu, J. Synthesis 2014, 47, 22. (b) Miyata, O.; Miyoshi, T.; Ueda, M. ARKIVOC 2013, 44 (2), 60. (c) Lohse, A. G.; Hsung, R. P. Chem. Eur. J. 2011, 17, 3812. (d) Harmata, M. Chem. Commun. 2010, 46, 8886. (e) Mascarenas, J. L.; Gulias, M.; Lopez, F. In (4 + 3) cycloadditions; Elsevier B.V.: Amsterdam, 2014; pp 595–655. (f) Montana, A. M.; Grima, P. M.; Batalla, C. Targets Heterocycl. Syst. 2009, 13, 231. (g) El-Wareth, A.; Sarhan, A. O. Curr. Org. Chem. 2001, 5, 827. (h) Mann, J. Tetrahedron 1986, 42, 4611.
- (5) Tang, Q.; Chen, X.; Tiwari, B.; Chi, Y. R. Org. Lett. 2012, 14, 1922.
- (6) Vander Wal, M. N.; Dilger, A. K.; MacMillan, D. W. C. Chem. Sci. 2013, 4, 3075.
- (7) Luo, J.; Zhou, H.; Hu, J.; Wang, R.; Tang, Q. RSC Adv. 2014, 4, 17370

- (8) (a) Stepherson, J. R.; Ayala, C. E.; Dange, N. S.; Kartika, R. Synlett **2016**, 27, 320. (b) Dange, N. S.; Stepherson, J. R.; Ayala, C. E.; Fronczek, F. R.; Kartika, R. Chem. Sci. **2015**, 6, 6312.
- (9) (a) Shenje, R.; Williams, C. W.; Francois, K. M.; France, S. Org. Lett. 2014, 16, 6468. (b) Aponte-Guzmán, J.; Taylor, J. E.; Tillman, E.; France, S. Org. Lett. 2014, 16, 3788. (c) Patil, D. V.; Phun, L. H.; France, S. Org. Lett. 2010, 12, 5684.
- (10) (a) Wu, Y.-K.; Dunbar, C. R.; McDonald, R.; Ferguson, M. J.; West, F. G. J. Am. Chem. Soc. **2014**, 136, 14903. (b) Rieder, C. J.; Fradette, R. J.; West, F. G. Chem. Commun. **2008**, 1572. (c) Browder, C. C.; Marmsäter, F. P.; West, F. G. Org. Lett. **2001**, 3, 3033.
- (11) For other examples of arylative, interrupted Nazarov cyclizations, see: (a) Marx, V. M.; LeFort, F. M.; Burnell, D. J. Adv. Synth. Catal. 2011, 353, 64. (b) Basak, A. K.; Tius, M. A. Org. Lett. 2008, 10, 4073.
- (12) He, H.; Herrick, I. R.; Atesin, T. A.; Caruana, P. A.; Kellenberger, C. A.; Frontier, A. J. J. Am. Chem. Soc. 2008, 130, 1003.
- (13) Pratihar, S.; Roy, S. J. Org. Chem. 2010, 75, 4957.
- (14) Alternatively, GC and HPLC can be used to quantify the diastereomeric ratios. Moreover, preparative HPLC can also be used to separate the individual components of the complex mixture.
- (15) Determined using NOESY-NMR. See the Supporting Information for details.
- (16) Fürst, A.; Plattner, Pl. A. Helv. Chim. Acta 1949, 32, 275.
- (17) Corey, E. J.; Feiner, N. F. J. Org. Chem. 1980, 45, 765.
- (18) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.
- (19) Marx, V. M.; Stoddard, R. L.; Heverly-Coulson, G. S.; Burnell, D. J. Chem. Eur. J. 2011, 17, 8098.
- (20) Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004, 43, 550.
- (21) Padwa, A.; Reger, T. S. Can. J. Chem. 2000, 78, 749.
- (22) (a) Cheng, Y.-B.; Chien, Y.-T.; Lee, J.-C.; Tseng, C.-T.; Wang, H.-C.; Lo, I.-W.; Wu, Y.-H.; Wang, S.-Y.; Wu, Y.-C.; Chang, F. R. J. Nat. Prod. 2014, 77, 2367. (b) Abdelgaleil, S. A. M.; Doe, M.; Morimoto, Y.; Nakatani, M. Phytochemistry 2006, 67, 452. (c) Kadota, S.; Marpaung, L.; Kikuchi, T.; Ekimoto, H. Chem. Pharm. Bull. 1990, 38, 894.
- (23) Ratio was determined using ¹H NMR for isolated 13. See the Supporting Information for spectrum.
- (24) The major constituents (75%) of the recovered starting material were unreacted $13B-\alpha/\beta$, the diastereomers with the allyl and furan groups positioned anti to one another. See the Supporting Information for comparison of ¹H NMR spectra of 13 before and after recovery from the reaction.
- (25) Saadati, F.; Meftah-Booshehri, H. Synlett 2013, 24, 1702.
- (26) (a) Fan, L.-L.; Liu, W.-Q.; Xu, H.; Yang, L.-M.; Lv, M.; Zheng, Y.-T. Chem. Pharm. Bull. 2009, 57, 797. (b) Liwosz, T. W.; Chemler, S. R. Chem. Eur. J. 2013, 19, 12771.
- (27) Farwaha, H. S.; Bucher, G.; Murphy, J. A. Org. Biomol. Chem. 2013, 11, 8073.
- (28) Teruhisa, T.; Ewan, H. W.; Makoto, K.; Ryu, N. Pyrrole Derivatives. U.S. Patent 6,759,429, July 6, 2004.
- (29) Yadav, V. K.; Balamurugan, R. Org. Lett. 2001, 3, 2717.
- (30) Patil, D. V.; Cavitt, M. A.; Grzybowski, P.; France, S. Chem. Commun. 2012, 48, 10337.
- (31) Chagarovskiy, A. O.; Ivanova, O. A.; Budynina, E. M.; Trushkov, I. V.; Melnikov, M. Y. *Tetrahedron Lett.* **2011**, *52*, 4421.